Assessment of the Impact of Selenium Fertilization on Nitrates (III) Content in Spinach (Spinacia Oleracea L.)

Authors

  • Ewelina Grochowska Spółka Agrarna AR Sp. z o.o., Zdunowo 48, 09-142 Załuski, Poland
  • Małgorzata Rosikiewicz-Wiankowska Spółka Agrarna AR Sp. z o.o., Zdunowo 48, 09-142 Załuski, Poland
  • Monika Komorowska Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow,21 Mickiewicza Av., 31-120 Krakow, Poland;
  • Marcin Niemiec Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow,21 Mickiewicza Av., 31-120 Krakow, Poland;

DOI:

https://doi.org/10.51699/ijbea.v2i12.3163

Keywords:

biofortification, selenium, spinach, nitrate (III, nitrate (V), healthy food

Abstract

Selenium (Se) is very important element for human health. It is involved in the body’s defense mechanisms and hormone biosynthesis. Selenium is an element that occurs in trace amounts in the human body, is involved in the protection of cell membranes and has anti-cancer properties. Selenium is a cofactor of glutathione peroxidase and plays an important role in preventing oxidative tissue damage. The aim of the study was to assess the effect of selenium fertilization of spinach Spinacia oleracea L. on the content of nitrates(III) and nitrates(V) under interrupted refrigeration conditions. The experiment was carried out on spinach plants after foliar fertilization. The experimental factor was the form of introduced selenium. The experiment included 2 experimental objects and a control object, without selenium fertilization. Foliar fertilization was applied 14 days before harvest. After harvest, the plant samples were divided into two parts, one of them was preserved and the other was stored at room temperature for 72 hours. The content of nitrate III and nitrate V was determined. The test results confirmed the positive effect of selenium on the reduction of nitrate III content, with increased effectiveness for the used form of sodium selenate.

References

Boldrin PF, Faquin V, Ramos SJ, Boldrin KVF, Ávila FW and Guilherme LRG, Soil and foliar application of selenium in rice biofortification. J Food Compos Anal 31:238–244 (2013). 18 Hladun KR, Parker DR, Tran KD and Trumble JT, Eff

Buturi CM, Mauro RP, Fogliano V, Leonardi C and Giuffrida F, Mineral biofortification of vegetables as a tool to improve human diet. Foods 10:2–23 (2021)

Chao W, Rao S, Chen Q, Zhang W, Liao Y, Ye J et al., Advances in research on the involvement of selenium in regulating plant ecosystems. Plants 11:2712 (2022).

Consentino BB., Ciriello M., Sabatino L., Vultaggio L., Baldassano S., Vasto S. et al., Current acquaintance on agronomic biofortification to modulate the yield and functional value of vegetable crops: a review. Horticulturae 9:219 (2023).

Ellis DR and Salt DE, Plants, selenium, and human health. Curr Opin Plant Biol 6:273–279 (2003).

Fernández-Lázaro D, Fernandez-Lazaro CI, Mielgo-Ayuso J, Navascués LJ, Córdova Martínez A and Seco-Calvo J, The role of selenium mineral trace element in exercise: antioxidant defense system, muscle performance, hormone response, and athletic performance. A systematic review. Nutrients 12:1790 (2020)

Karmańska A., Bąk-Sypień I., Panek M., Karwowski B., (2017) badanie zawartości związków polifenolowych oraz aktywności przeciwutleniającej szpinaku (Spinacia oleracea l.), BROMAT. CHEM. TOKSYKOL. – L, 2017, 3, str. 241 – 245

Kumar D, Kumar S and Shekhar C, Nutritional components in green leafy vegetables: a review. J Pharmacogn Phytochem 9:2498–2502 (2020).

Petropoulos SA, Chatzieustratiou E, Constantopoulou E and Kapotis G, Yield and quality of lettuce and rocket grown in floating culture system. Not Bot Horti Agrobot Cluj-Napoca 44:603–612 (2016)

Kunachowicz H., Nadolna I., Iwanow K., Przygoda B.: Tabele składu i wartości odżywczej żywności. PZWL 2017.

Moćko A., Wacławek W.: Ocena zawartości metali ciężkich oraz azotanów (III) i (V) w wybranych gatunkach warzyw ogrodów działkowych miasta Ozinmek. Bromat. Chem. Toksykol., 2005; 38(1): 41-46.

Pyrzyńska K., Sentkowska A., Selenium in plant foods: speciation analysis, bioavailability, and factors affecting composition. Crit Rev Food Sci Nutr 61:1340–1352 (2021)

Rios JJ, Blasco B, Rosales MA, Sanchez-Rodriguez E, Leyva R, Cervilla LM et al., Response of nitrogen metabolism in lettuce plants subjected to different doses and forms of selenium. J Sci Food Agric 90:1914– 1919 (2010).

Rostkowski J., Borawska M., Omieljaniuk N., Otłog K.: Występowanie azotanów i azotynów we wczesnych warzywach i ziemniakach dostępnych w handlu Białegostoku w 1992 roku. Roczn. PZH, 1994; 45(1-2): 81-87

SHI Ya-jing, SHI Ya-juan, WANG Yu-rong, WANG Hui-min, QIN Li-kai. Effects of inorganic selenium fertilizer on available nitrogen content in soil and spinach quality[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(2): 274-283.

Stasiak A., Wilska-Jeszke J.: Azotany i azotyny w warzywach – toksyczność – występowanie. Przem. Ferm. 1983; 5:27-20

Steiner I., Lembracher J., Washuetti J.: Production of nitrate by microorganisms in vegetables with content of nitrate after cooking and storage. Ernahrung, 1996; 20(11): 570

Downloads

Published

2023-12-21

How to Cite

Ewelina Grochowska, Małgorzata Rosikiewicz-Wiankowska, Monika Komorowska, & Marcin Niemiec. (2023). Assessment of the Impact of Selenium Fertilization on Nitrates (III) Content in Spinach (Spinacia Oleracea L.). International Journal of Biological Engineering and Agriculture, 2(12), 183–187. https://doi.org/10.51699/ijbea.v2i12.3163