Seroprevalence of Inflammatory Markers in a Sample of College Students
DOI:
https://doi.org/10.51699/ijhsms.v2i12.3254Keywords:
Blood hypertension, diabetes, inflammatory markersAbstract
The current study was conducted to measure and compare some serum inflammatory markers in blood samples of college members. The samples were 33 males and females, from which blood samples were taken to examine the levels of RBC, Hb, HBA1C, Blood urea, Serum creatinine (sCr), Cholesterol, Triglycerides, LDL, HDL, VLDL , and Uric acid. The results revealed significant (p˂0.05) increases in the levels of these parameters in patients with diabetes and blood hypertension. Moreover, the results showed significant (p˂0.05) correlation between the elevation in these parameters and age and gender. The present findings display positive correlation of inflammatory markers and being sick with diabetes or hypertension, especially in women and high age.
Downloads
References
Adediran, O., Akintunde, A. A., Edo, A. E., Opadijo, O. G., & Araoye, A. (2012). Impact of urbanization and gender on frequency of metabolic syndrome among native Abuja settlers in Nigeria. Journal of Cardiovascular Disease Research, 3(3), 191. https://doi.org/10.4103/0975-3583.98890
Antoniades, C. (2017). “Dysfunctional” adipose tissue in cardiovascular disease: a reprogrammable target or an innocent bystander? Cardiovascular Research, 113(9), 997–998. https://doi.org/10.1093/CVR/CVX116
Bergmann, K., & Sypniewska, G. (2013). Diabetes as a complication of adipose tissue dysfunction. Is there a role for potential new biomarkers? Clinical Chemistry and Laboratory Medicine, 51(1), 177–185. https://doi.org/10.1515/CCLM-2012-0490/ASSET/GRAPHIC/J_CCLM-2012-0490_FIG_002.JPG
Brownlee, M. (2005). The pathobiology of diabetic complications: a unifying mechanism. Diabetes, 54(6), 1615–1625. https://doi.org/10.2337/DIABETES.54.6.1615
Camastra, S., Vitali, A., Anselmino, M., Gastaldelli, A., Bellini, R., Berta, R., Severi, I., Baldi, S., Astiarraga, B., Barbatelli, G., Cinti, S., & Ferrannini, E. (2017). Muscle and adipose tissue morphology, insulin sensitivity and beta-cell function in diabetic and nondiabetic obese patients: effects of bariatric surgery. Scientific Reports, 7(1). https://doi.org/10.1038/S41598-017-08444-6
Christensen, K. H., Grove, E. L., Würtz, M., Kristensen, S. D., & Hvas, A. M. (2015). Reduced antiplatelet effect of aspirin during 24 hours in patients with coronary artery disease and type 2 diabetes. Http://Dx.Doi.Org/10.3109/09537104.2014.901497, 26(3), 230–235. https://doi.org/10.3109/09537104.2014.901497
Creager, M. A., Lüscher, T. F., Cosentino, F., & Beckman, J. A. (2003). Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: Part I. Circulation, 108(12), 1527–1532. https://doi.org/10.1161/01.CIR.0000091257.27563.32
Eapen, D. J., Kalra, G. L., Rifai, L., Eapen, C. A., Merchant, N., & Khan, B. V. (2009). Raising HDL cholesterol in women. International Journal of Women’s Health, 1(1), 181. https://doi.org/10.2147/IJWH.S5110
Ferrannini, E., & Mari, A. (2014). β-Cell function in type 2 diabetes. Metabolism: Clinical and Experimental, 63(10), 1217–1227. https://doi.org/10.1016/J.METABOL.2014.05.012
Giordano, A., Murano, I., Mondini, E., Perugini, J., Smorlesi, A., Severi, I., Barazzoni, R., Scherer, P. E., & Cinti, S. (2013). Obese adipocytes show ultrastructural features of stressed cells and die of pyroptosis. Journal of Lipid Research, 54(9), 2423. https://doi.org/10.1194/JLR.M038638
Gkrania-Klotsas, E., Ye, Z., Cooper, A. J., Sharp, S. J., Luben, R., Biggs, M. L., Chen, L. K., Gokulakrishnan, K., Hanefeld, M., Ingelsson, E., Lai, W. A., Lin, S. Y., Lind, L., Lohsoonthorn, V., Mohan, V., Muscari, A., Nilsson, G., Ohrvik, J., Qiang, J. C., … Langenberg, C. (2010). Differential White Blood Cell Count and Type 2 Diabetes: Systematic Review and Meta-Analysis of Cross-Sectional and Prospective Studies. PLOS ONE, 5(10), e13405. https://doi.org/10.1371/JOURNAL.PONE.0013405
Guzik, T. J., & Cosentino, F. (2018). Epigenetics and Immunometabolism in Diabetes and Aging. Antioxidants & Redox Signaling, 29(3), 257. https://doi.org/10.1089/ARS.2017.7299
Hasnain, S. Z., Borg, D. J., Harcourt, B. E., Tong, H., Sheng, Y. H., Ng, C. P., Das, I., Wang, R., Chen, A. C. H., Loudovaris, T., Kay, T. W., Thomas, H. E., Whitehead, J. P., Forbes, J. M., Prins, J. B., & McGuckin, M. A. (2014). Glycemic control in diabetes is restored by therapeutic manipulation of cytokines that regulate beta cell stress. Nature Medicine, 20(12), 1417–1426. https://doi.org/10.1038/NM.3705
Jung, U. J., & Choi, M. S. (2014). Obesity and Its Metabolic Complications: The Role of Adipokines and the Relationship between Obesity, Inflammation, Insulin Resistance, Dyslipidemia and Nonalcoholic Fatty Liver Disease. International Journal of Molecular Sciences, 15(4), 6184. https://doi.org/10.3390/IJMS15046184
Lorenzo, C., Hanley, A. J., & Haffner, S. M. (2014). Differential white cell count and incident type 2 diabetes: the Insulin Resistance Atherosclerosis Study. Diabetologia, 57(1), 83. https://doi.org/10.1007/S00125-013-3080-0
Mills, K. T., Bundy, J. D., Kelly, T. N., Reed, J. E., Kearney, P. M., Reynolds, K., Chen, J., & He, J. (2016). Global Disparities of Hypertension Prevalence and Control: A Systematic Analysis of Population-based Studies from 90 Countries. Circulation, 134(6), 441. https://doi.org/10.1161/CIRCULATIONAHA.115.018912
Ogurtsova, K., da Rocha Fernandes, J. D., Huang, Y., Linnenkamp, U., Guariguata, L., Cho, N. H., Cavan, D., Shaw, J. E., & Makaroff, L. E. (2017). IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Research and Clinical Practice, 128, 40–50. https://doi.org/10.1016/J.DIABRES.2017.03.024
Russo, G., Pintaudi, B., Giorda, C., Lucisano, G., Nicolucci, A., Cristofaro, M. R., Suraci, C., Mulas, M. F., Napoli, A., Rossi, M. C., & Manicardi, V. (2015). Age- and Gender-Related Differences in LDL-Cholesterol Management in Outpatients with Type 2 Diabetes Mellitus. International Journal of Endocrinology, 2015(3), 957105. https://doi.org/10.1155/2015/957105
Scheen, A. J. (2014). PATHOPHYSIOLOGY OF TYPE 2 DIABETES. Http://Dx.Doi.Org/10.1179/Acb.2003.58.6.001, 58(6), 335–341. https://doi.org/10.1179/ACB.2003.58.6.001
Scuteri, A., Tesauro, M., Rizza, S., Iantorno, M., Federici, M., Lauro, D., Campia, U., Turriziani, M., Fusco, A., Cocciolillo, G., & Lauro, R. (2008). Endothelial function and arterial stiffness in normotensive normoglycemic first-degree relatives of diabetic patients are independent of the metabolic syndrome. Nutrition, Metabolism, and Cardiovascular Diseases : NMCD, 18(5), 349–356. https://doi.org/10.1016/J.NUMECD.2007.03.008
Su, Y., Liu, X. M., Sun, Y. M., Wang, Y. Y., Luan, Y., & Wu, Y. (2008). Endothelial dysfunction in impaired fasting glycemia, impaired glucose tolerance, and type 2 diabetes mellitus. The American Journal of Cardiology, 102(4), 497–498. https://doi.org/10.1016/J.AMJCARD.2008.03.087