Synthesis, Characterization and Antibacterial Activity of Carboxylated Polyvinylpyrrolidone Conjugation with Tranexamic Acid (TXA)

Authors

  • Laith Ali Al –Abdullah Department of pharmaceutical chemistry, College of Pharmacy - University of Basrah, Basrah, Iraq
  • Raheem Jameel Mahesein Department of pharmaceutical chemistry, College of Pharmacy - University of Basrah, Basrah, Iraq

DOI:

https://doi.org/10.51699/ijhsms.v2i10.2734

Keywords:

tranexamic acid (TXA), PVP, antfibrinolytic

Abstract

Polymer conjugation with biologically active components has become a very attractive system as it could improve the efficacy of some drugs. This study aims to prepare and formulate a topical polymer conjugate with biologically active components for a therapy of bleeding using tranexamic acid as a drug model and study the antibacterial activity of the resultant products.

The polymeric matrix involved carboxylated polyvinylpyrrolidone. Hence, carboxylated polyvinylpyrrolidone was bonding with tranexamic acid by an amide bond (P1), resulting in a product complex with iodine (P2).

In order to determine the amount of medication present in these derivatives, FTIR, DSC, and 1HNMR characterization techniques were utilized. The antibacterial potential of the prepared samples (P1, P2) with the use of PVP iodine as a control was studied against different amounts of Grammeme's negative and Grammeme's positive bacteria, including Pseudomonas aeruginosa, E. coli, S. aureus, and K. pneumoniae. There were four different strains of bacteria tested. When bacteria like E. coli and S. aureus were used, the results showed that P1 and P2 were more effective at killing bacteria than PVP iodine.

Downloads

Download data is not yet available.

References

J.-G. J, “Biomedical application of functional polymers (vol 39, pg 99, 1999),” React. Funct. Polym., vol. 40, no. 2, pp. 185–185, May 1999, doi: 10.1016/S1381-5148(99)00047-4.

J. C. Middleton and A. J. Tipton, “Synthetic biodegradable polymers as orthopedic devices,” Biomaterials, vol. 21, no. 23, pp. 2335–2346, Dec. 2000, doi: 10.1016/S0142-9612(00)00101-0.

J. Jagur-Grodzinski, “Polymers for tissue engineering, medical devices, and regenerative medicine. Concise general review of recent studies,” Polym. Adv. Technol., vol. 17, no. 6, pp. 395–418, Jun. 2006, doi: 10.1002/PAT.729.

M. E. Gomes and R. L. Reis, “Biodegradable polymers and composites in biomedical applications: from catgut to tissue engineering. Part 1 Available systems and their properties,” http://dx.doi.org/10.1179/095066004225021918, vol. 49, no. 5, pp. 261–273, Oct. 2013, doi: 10.1179/095066004225021918.

L. Drselen, M. Dauner, H. Hierlemann, H. Planck, L. E. Claes, and A. Ignatius, “Resorbable polymer fibers for ligament augmentation,” J. Biomed. Mater. Res., vol. 58, no. 6, pp. 666–672, Jan. 2001, doi: 10.1002/jbm.1067.

F. Haaf, A. Sanner, and F. Straub, “Polymers of N-Vinylpyrrolidone: Synthesis, Characterization and Uses,” Polym. J. 1985 171, vol. 17, no. 1, pp. 143–152, 1985, doi: 10.1295/polymj.17.143.

K. M. Koczkur, S. Mourdikoudis, L. Polavarapu, and S. E. Skrabalak, “Polyvinylpyrrolidone (PVP) in nanoparticle synthesis,” Dalt. Trans., vol. 44, no. 41, pp. 17883–17905, Oct. 2015, doi: 10.1039/C5DT02964C.

M. Kurakula and G. S. N. Koteswara Rao, “Moving polyvinyl pyrrolidone electrospun nanofibers and bioprinted scaffolds toward multidisciplinary biomedical applications,” Eur. Polym. J., vol. 136, p. 109919, Aug. 2020, doi: 10.1016/J.EURPOLYMJ.2020.109919.

M. Teodorescu, M. Bercea, and S. Morariu, “Biomaterials of PVA and PVP in medical and pharmaceutical applications: Perspectives and challenges,” Biotechnol. Adv., vol. 37, no. 1, pp. 109–131, Jan. 2019, doi: 10.1016/J.BIOTECHADV.2018.11.008.

V. Bampidis et al., “Safety and efficacy of a feed additive consisting of carrageenan for pets and other non‐food‐producing animals (Marinalg International),” EFSA J., vol. 20, no. 4, p. 7285, Apr. 2022, doi: 10.2903/J.EFSA.2022.7285.

R. Awasthi et al., “Poly(vinylpyrrolidone),” Eng. Biomater. Drug Deliv. Syst. Beyond Polyethyl. Glycol, pp. 255–272, Jan. 2018, doi: 10.1016/B978-0-08-101750-0.00009-X.

M. Kurakula and G. S. N. K. Rao, “Pharmaceutical assessment of polyvinylpyrrolidone (PVP): As excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition,” J. Drug Deliv. Sci. Technol., vol. 60, p. 102046, Dec. 2020, doi: 10.1016/J.JDDST.2020.102046.

L. A. Alrubaie, R. J. Muhasin, and M. N. Mousa, “Synthesis, characterization and evaluation of antiinflammatory properties of novel α, β-unsaturated ketones,” Trop. J. Pharm. Res., vol. 19, no. 1, pp. 147–154, Apr. 2020, doi: 10.4314/TJPR.V19I1.22.

M. K. Chun, P. Bhusal, and H. K. Choi, “Application of Carbopol/PVP interpolymer complex to prepare mucoadhesive floating granule,” Arch. Pharm. Res., vol. 36, no. 6, pp. 745–751, Jun. 2013, doi: 10.1007/S12272-013-0035-4/METRICS.

R. H. Sizílio et al., “Chitosan/pvp-based mucoadhesive membranes as a promising delivery system of betamethasone-17-valerate for aphthous stomatitis,” Carbohydr. Polym., vol. 190, pp. 339–345, Jun. 2018, doi: 10.1016/J.CARBPOL.2018.02.079.

J. Suksaeree, P. Siripornpinyo, S. Chaiprasit, and S. H. Neau, “Formulation, characterization, and in vitro evaluation of transdermal patches for inhibiting crystallization of mefenamic acid‏,” downloads.hindawi.com‏, 2017, doi: 10.1155/2017/7358042.

M. A. Dakhal and T. A. Abid, “Use of Povidone Iodine plus Diode Laser for Treatment of Infected Wound in Mice,” vol. 21, 2022.

P. L. Bigliardi, S. A. L. Alsagoff, H. Y. El-Kafrawi, J. K. Pyon, C. T. C. Wa, and M. A. Villa, “Povidone iodine in wound healing: A review of current concepts and practices,” Int. J. Surg., vol. 44, pp. 260–268, Aug. 2017, doi: 10.1016/J.IJSU.2017.06.073.

P. Bigliardi, S. Langer, J. J. Cruz, S. W. Kim, H. Nair, and G. Srisawasdi, “An Asian Perspective on Povidone Iodine in Wound Healing,” Dermatology, vol. 233, no. 2–3, pp. 223–233, Oct. 2017, doi: 10.1159/000479150.

B. A. Lipsky and C. Hoey, “Topical antimicrobial therapy for treating chronic wounds,” Clin. Infect. Dis., vol. 49, no. 10, pp. 1541–1549, Nov. 2009, doi: 10.1086/644732/2/49-10-1541-TBL006.GIF.

D. J. Leaper, G. Schultz, K. Carville, J. Fletcher, T. Swanson, and R. Drake, “Extending the TIME concept: what have we learned in the past 10 years?*,” Int. Wound J., vol. 9, no. SUPPL. 2, pp. 1–19, Dec. 2012, doi: 10.1111/J.1742-481X.2012.01097.X.

M. Ip, “Antimicrobial dressings,” Adv. Wound Repair Ther., pp. 416–449, 2011, doi: 10.1533/9780857093301.3.416.

L. Saleh, R. Jameel, M. Al-Lami, and R. Abdulnabi, “Synthesis and Preliminary Pharmaceutical Evaluation of New Polymeric Prodrug of Levofloxacin as a Drug Delivery System,” Egypt. J. Chem., vol. 0, no. 0, pp. 0–0, 2020, doi: 10.21608/ejchem.2020.34131.2720.

R. J. Mahesein, “synthesis and characterization of Pyrimidine from chalcone as a polymeric prodrug with fusidic acid and ZnO and study bioactivity,” J. Popul. Ther. Clin. Pharmacol., vol. 30, no. 5, pp. 156–175, 2023, doi: 10.47750/jptcp.2023.30.05.018.

D. J. Leaper and P. Durani, “Topical antimicrobial therapy of chronic wounds healing by secondary intention using iodine products,” Int. Wound J., vol. 5, no. 2, pp. 361–368, May 2008, doi: 10.1111/J.1742-481X.2007.00406.X.

J. Guadalupe and M. Garcia, “THE ROLE OF PHOTODYNAMIC THERAPY IN WOUND HEALING AND SCARRING IN HUMAN SKIN,” 2015.

P. S. Myles et al., “Tranexamic Acid in Patients Undergoing Coronary-Artery Surgery,” N. Engl. J. Med., vol. 376, no. 2, pp. 136–148, Jan. 2017, doi: 10.1056/NEJMOA1606424/SUPPL_FILE/NEJMOA1606424_DISCLOSURES.PDF.

F. Huang, D. Wu, G. Ma, Z. Yin, and Q. Wang, “The use of tranexamic acid to reduce blood loss and transfusion in major orthopedic surgery: a meta-analysis,” J. Surg. Res., vol. 186, no. 1, pp. 318–327, Jan. 2014, doi: 10.1016/J.JSS.2013.08.020.

M. Ali et al., “The Effect of Tranexamic Acid on the Outcome of Total Ankle Replacement,” Cureus, vol. 14, no. 7, Jul. 2022, doi: 10.7759/CUREUS.26706.

H. H. Bahjat, R. A. Ismail, G. M. Sulaiman, and M. S. Jabir, “Magnetic Field-Assisted Laser Ablation of Titanium Dioxide Nanoparticles in Water for Anti-Bacterial Applications,” J. Inorg. Organomet. Polym. Mater., vol. 31, no. 9, pp. 3649–3656, Sep. 2021, doi: 10.1007/S10904-021-01973-8/METRICS.

K. S. Khashan, F. A. Abdulameer, M. S. Jabir, A. A. Hadi, and G. M. Sulaiman, “Anticancer activity and toxicity of carbon nanoparticles produced by pulsed laser ablation of graphite in water,” Adv. Nat. Sci. Nanosci. Nanotechnol., vol. 11, no. 3, p. 035010, Jul. 2020, doi: 10.1088/2043-6254/ABA1DE.

M. A. Jihad, F. T. M. Noori, M. S. Jabir, S. Albukhaty, F. A. Almalki, and A. A. Alyamani, “Polyethylene Glycol Functionalized Graphene Oxide Nanoparticles Loaded with Nigella sativa Extract: A Smart Antibacterial Therapeutic Drug Delivery System,” Mol. 2021, Vol. 26, Page 3067, vol. 26, no. 11, p. 3067, May 2021, doi: 10.3390/MOLECULES26113067.

S. H. Mannoush, A. A. Thaker, and M. S. Jabir, “Inhibition of Ovarian Cancer Cells Growth Using Gold Nanoparticles and Silica Coated Gold Nanoparticles: In-Vitro Study,” J. Pharm. Negat. Results, vol. 13, no. 3, pp. 727–733, Sep. 2022, doi: 10.47750/PNR.2022.13.03.109.

Downloads

Published

2023-10-30

How to Cite

Laith Ali Al –Abdullah, & Raheem Jameel Mahesein. (2023). Synthesis, Characterization and Antibacterial Activity of Carboxylated Polyvinylpyrrolidone Conjugation with Tranexamic Acid (TXA). INTERNATIONAL JOURNAL OF HEALTH SYSTEMS AND MEDICAL SCIENCES, 2(10), 172–181. https://doi.org/10.51699/ijhsms.v2i10.2734

Issue

Section

Articles