Biotechnological Utilization of Kluyveromyces (3 Strains) for Flavor Compound Production from Agricultural Wastes"


  • Ammar Abdulhasan Aldhalemi University of Kufa, Iraq
  • Elham I. AL-Shamary University. of Baghdad, Iraq
  • Murtadha Abdulhasan Aldhalemi University of Kufa, Iraq
  • Qais R. Lahhob University of Science and Technology, Dhi Qar, 64001, Iraq


Biotechnologica, Flavor Compound Production, Agricultural Wastes


An emerging field of biotechnology that has strong implications for the environment and economy is the use of yeast strains to convert sustainable agricultural and dairy wastes into useful products. These yeasts have special metabolism which enables them convert low value substrates into high value flavors and fragrances through different fermentation processes. K. marxianus is capable of producing numerous kinds of volatile molecules due to its fast growth rate and thermotolerance while K. lactis as well as K.fragilis can produce specific compounds like volatile sulfur compounds or glycerol respectively when grown under certain conditions known from prior researches. In this review we describe what these microorganisms are able to do according on substrate specificity; process optimization methods employed during their utilization as flavor producers besides potential applications in biotechnology concerning flavors are also discussed here.


Qiu Y, Lei P, Wang R, Sun L, Luo Z, Li S, et al. Kluyveromyces as promising yeast cell factories for industrial bioproduction: From bio-functional design to applications. Biotechnology advances. 2023;64:108125.

Bilal M, Ji L, Xu Y, Xu S, Lin Y, Iqbal HMN, et al. Bioprospecting Kluyveromyces marxianus as a Robust Host for Industrial Biotechnology. Frontiers in bioengineering and biotechnology. 2022;10:851768.

Chang CC, Li R. Agricultural waste. Water environment research : a research publication of the Water Environment Federation. 2019;91(10):1150-67.

Karim A, Gerliani N, Aïder M. Kluyveromyces marxianus: An emerging yeast cell factory for applications in food and biotechnology. International journal of food microbiology. 2020;333:108818.

Tang N, Wang X, Yang R, Liu Z, Liu Y, Tian J, et al. Extraction, isolation, structural characterization and prebiotic activity of cell wall polysaccharide from Kluyveromyces marxianus. Carbohydrate Polymers. 2022;289:119457.

Lodder J, Kreger-van Rij NJW. The yeasts. A taxonomic study. The yeasts A taxonomic study. 1952.

Van der Walt J, Johannsen E. Kluyveromyces van der Walt emend. van der Walt. The yeasts: a taxonomic study, 2nd edn NHPC, Amsterdam. 1970:316-78.

Iborra F. High efficiency transformation of Kluyveromyces marxianus by a replicative plasmid. Current genetics. 1993;24(1-2):181-3.

Lane MM, Burke N, Karreman R, Wolfe KH, O’Byrne CP, Morrissey JP. Physiological and metabolic diversity in the yeast Kluyveromyces marxianus. Antonie Van Leeuwenhoek. 2011;100:507-19.

Jeong H, Lee D-H, Kim SH, Kim H-J, Lee K, Song JY, et al. Genome sequence of the thermotolerant yeast Kluyveromyces marxianus var. marxianus KCTC 17555. Am Soc Microbiol; 2012.

Nambu-Nishida Y, Nishida K, Hasunuma T, Kondo A. Development of a comprehensive set of tools for genome engineering in a cold-and thermo-tolerant Kluyveromyces marxianus yeast strain. Scientific reports. 2017;7(1):8993.

Rajkumar AS, Varela JA, Juergens H, Daran J-MG, Morrissey JP. Biological parts for Kluyveromyces marxianus synthetic biology. Frontiers in bioengineering and biotechnology. 2019;7:97.

Pandey A, Sirohi R, Larroche C, Taherzadeh M. Current Developments in Biotechnology and Bioengineering: Advances in Bioprocess Engineering: Elsevier; 2022.

Baptista M, Domingues L. Kluyveromyces marxianus as a microbial cell factory for lignocellulosic biomass valorisation. Biotechnology advances. 2022;60:108027.

Das S, Hollenberg CP. A high-frequency transformation system for the yeast Kluyveromyces lactis. Current Genetics. 1982;6:123-8.

Swinkels BW, van Ooyen AJ, Bonekamp FJ. The yeast Kluyveromyces lactis as an efficient host for heterologous gene expression. Antonie van Leeuwenhoek. 1993;64:187-201.

V. Gomes AM, CM Netto JH, Carvalho LS, Parachin NS. Heterologous hyaluronic acid production in Kluyveromyces lactis. Microorganisms. 2019;7(9):294.

Song X, Qiao L, Yan S, Chen Y, Dou X, Xu C. Preparation, characterization, and in vivo evaluation of anti-inflammatory activities of selenium nanoparticles synthesized by Kluyveromyces lactis GG799. Food & Function. 2021;12(14):6403-15.

Quarella S, Lovrovich P, Scalabrin S, Campedelli I, Backovic A, Gatto V, et al. Draft genome sequence of the probiotic yeast Kluyveromyces marxianus fragilis B0399. Genome Announcements. 2016;4(5):10.1128/genomea. 00923-16.

Lee M-H, Lin J-J, Lin Y-J, Chang J-J, Ke H-M, Fan W-L, et al. Genome-wide prediction of CRISPR/Cas9 targets in Kluyveromyces marxianus and its application to obtain a stable haploid strain. Scientific reports. 2018;8(1):7305.

Matsumoto I, Arai T, Nishimoto Y, Leelavatcharamas V, Furuta M, Kishida M. Thermotolerant yeast Kluyveromyces marxianus reveals more tolerance to heat shock than the brewery yeast Saccharomyces cerevisiae. Biocontrol science. 2018;23(3):133-8.

McTaggart TL, Bever D, Bassett S, Da Silva NA. Synthesis of polyketides from low cost substrates by the thermotolerant yeast Kluyveromyces marxianus. Biotechnology and bioengineering. 2019;116(7):1721-30.

Gao J, Yuan W, Li Y, Xiang R, Hou S, Zhong S, et al. Transcriptional analysis of Kluyveromyces marxianus for ethanol production from inulin using consolidated bioprocessing technology. Biotechnology for biofuels. 2015;8:1-17.

Li P, Fu X, Chen M, Zhang L, Li S. Proteomic profiling and integrated analysis with transcriptomic data bring new insights in the stress responses of Kluyveromyces marxianus after an arrest during high-temperature ethanol fermentation. Biotechnology for biofuels. 2019;12:1-13.

Li P, Tan X, Fu X, Dang Y, Li S. Metabolomic analysis reveals Kluyveromyces marxianus’s stress responses during high-temperature ethanol fermentation. Process Biochemistry. 2021;102:386-92.

Diniz RHS, Villada JC, Alvim MCT, Vidigal PMP, Vieira NM, Lamas-Maceiras M, et al. Transcriptome analysis of the thermotolerant yeast Kluyveromyces marxianus CCT 7735 under ethanol stress. Applied microbiology and biotechnology. 2017;101:6969-80.

Wang D, Wu D, Yang X, Hong J. Transcriptomic analysis of thermotolerant yeast Kluyveromyces marxianus in multiple inhibitors tolerance. RSC advances. 2018;8(26):14177-92.

Baptista M, Cunha JT, Domingues L. Establishment of Kluyveromyces marxianus as a microbial cell factory for lignocellulosic processes: Production of high value furan derivatives. Journal of Fungi. 2021;7(12):1047.

Yang D, Chen L, Duan J, Yu Y, Zhou J, Lu H. Investigation of Kluyveromyces marxianus as a novel host for large‐scale production of porcine parvovirus virus‐like particles. Microbial Cell Factories. 2021;20:1-13.

Beniwal A, Saini P, Kokkiligadda A, Vij S. Physiological growth and galactose utilization by dairy yeast Kluyveromyces marxianus in mixed sugars and whey during fermentation. 3 Biotech. 2017;7:1-13.

Carvalho P, Costa CE, Baptista SIL, Domingues L. Yeast cell factories for sustainable whey-to-ethanol valorisation towards a circular economy. 2021.

Adelabu BA, Kareem SO, Oluwafemi F, Adeogun IA. Bioconversion of corn straw to ethanol by cellulolytic yeasts immobilized in Mucuna urens matrix. Journal of King Saud University-Science. 2019;31(1):136-41.

Godfray HC, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, et al. Food security: the challenge of feeding 9 billion people. Science (New York, NY). 2010;327(5967):812-8.

Plant AG, Kos B, Jazbec A, Snoj L, Joyce MJ, Najdanovic-Visak V. Nuclear Cogeneration of Methanol and Acetaldehyde from Ethylene Glycol Using Ionizing Radiation. Industrial & engineering chemistry research. 2023;62(49):21152-63.

Sadh PK, Chawla P, Kumar S, Das A, Kumar R, Bains A, et al. Recovery of agricultural waste biomass: A path for circular bioeconomy. The Science of the total environment. 2023;870:161904.

Koul B, Yakoob M, Shah MP. Agricultural waste management strategies for environmental sustainability. Environmental research. 2022;206:112285.

Atinkut HB, Yan T, Arega Y, Raza MH. Farmers’ willingness-to-pay for eco-friendly agricultural waste management in Ethiopia: A contingent valuation. Journal of cleaner production. 2020;261:121211.

UNEP U. Towards a green economy: Pathways to sustainable development and poverty eradication. Nairobi, Kenya: UNEP. 2011.

Chakraborty D, Garg R, Tomar R, Singh R, Sharma S, Singh R, et al. Synthetic and organic mulching and nitrogen effect on winter wheat (Triticum aestivum L.) in a semi-arid environment. Agricultural water management. 2010;97(5):738-48.

Achinas S, Euverink GJW. Consolidated briefing of biochemical ethanol production from lignocellulosic biomass. Electronic Journal of Biotechnology. 2016;23:44-53.

Shahid MK, Batool A, Kashif A, Nawaz MH, Aslam M, Iqbal N, et al. Biofuels and biorefineries: Development, application and future perspectives emphasizing the environmental and economic aspects. Journal of environmental management. 2021;297:113268.

Sarkar S, Skalicky M, Hossain A, Brestic M, Saha S, Garai S, et al. Management of crop residues for improving input use efficiency and agricultural sustainability. Sustainability. 2020;12(23):9808.

Kumar G, Shobana S, Nagarajan D, Lee DJ, Lee KS, Lin CY, et al. Biomass based hydrogen production by dark fermentation-recent trends and opportunities for greener processes. Current opinion in biotechnology. 2018;50:136-45.

Zhu QL, Wu B, Pisutpaisal N, Wang YW, Ma KD, Dai LC, et al. Bioenergy from dairy manure: technologies, challenges and opportunities. The Science of the total environment. 2021;790:148199.

Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P. The future of anaerobic digestion and biogas utilization. Bioresource technology. 2009;100(22):5478-84.

Hijosa-Valsero M, Paniagua-García AI, Díez-Antolínez R. Biobutanol production from apple pomace: the importance of pretreatment methods on the fermentability of lignocellulosic agro-food wastes. Applied microbiology and biotechnology. 2017;101(21):8041-52.

FAO. The state of world fisheries and aquaculture. Contributing to food security and nutrition for all. Rome. 2016.

FAO F. Agriculture Organization of the United Nations 2018 The state of world fisheries and aquaculture 2018—Meeting the sustainable development goals. CC BYNC-SA. 2018;3.

Henriksson PJG, Belton B, Jahan KM, Rico A. Measuring the potential for sustainable intensification of aquaculture in Bangladesh using life cycle assessment. Proceedings of the National Academy of Sciences of the United States of America. 2018;115(12):2958-63.

Akinwole A, Dauda A, Ololade O. Growth performance of african catfish (Clarias gariepinus) juveniles reared in wastewater treated with alum and Moringa oleifera seed. J Aquac Res Dev. 2016;7:460.

Boyd CE. Guidelines for aquaculture effluent management at the farm-level. Aquaculture. 2003;226(1-4):101-12.

Stephens WW, Farris JL. A biomonitoring approach to aquaculture effluent characterization in channel catfish fingerling production. Aquaculture. 2004;241(1-4):319-30.

Iber BT, Okomoda VT, Rozaimah SA, Kasan NA. Eco-friendly approaches to aquaculture wastewater treatment: Assessment of natural coagulants vis-a-vis chitosan. Bioresource Technology Reports. 2021;15:100702.

Dauda AB, Ajadi A, Tola-Fabunmi AS, Akinwole AO. Waste production in aquaculture: Sources, components and managements in different culture systems. Aquaculture and Fisheries. 2019;4(3):81-8.

Adebo OA, Njobeh PB, Desobgo SCZ, Pieterse M, Kayitesi E, Ndinteh DT. Profiling of volatile flavor compounds in nkui (a Cameroonian food) by solid phase extraction and 2D gas chromatography time of flight mass spectrometry (SPME-GC×GC-TOF-MS). Food science & nutrition. 2018;6(8):2028-35.

Gan S, Zhang M, Mujumdar AS, Zhang L, Liu Y. Advances in processing, encapsulation, and analysis of food flavor compounds. Journal of Food Process Engineering. 2023;46(10):e14406.

Rune CJB, Münchow M, Perez-Cueto FJ, Giacalone D. Pairing coffee with basic tastes and real foods changes perceived sensory characteristics and consumer liking. International Journal of Gastronomy and Food Science. 2022;30:100591.

Brehm L, Jünger M, Frank O, Hofmann T. Discovery of a Thiamine-Derived Taste Enhancer in Process Flavors. Journal of agricultural and food chemistry. 2019;67(20):5857-65.

Peng L, Gao W, Song M, Li M, He D, Wang Z. Integrated Metabolome and Transcriptome Analysis of Fruit Flavor and Carotenoids Biosynthesis Differences Between Mature-Green and Tree-Ripe of cv. "Golden Phoenix" Mangoes (Mangifera indica L.). Frontiers in plant science. 2022;13:816492.

Chai Q, Hayat K, Karangwa E, Duhoranimana E, Zhang X, Xia S, et al. Investigating the optimum conditions for minimized 3-chloropropane-1,2-diol esters content and improved sensory attributes during savory beef flavor preparation. Food chemistry. 2018;243:96-102.

Fisher C, Scott TR. Food flavours: biology and chemistry: Royal Society of chemistry; 2020.

Chun S, Chambers Et, Chambers DH. Effects of Shiitake (Lentinus edodes P.) Mushroom Powder and Sodium Tripolyphosphate on Texture and Flavor of Pork Patties. Foods (Basel, Switzerland). 2020;9(5).

Zhang Y, Kan J, Liu X, Song F, Zhu K, Li N, et al. Chemical Components, Nutritional Value, Volatile Organic Compounds and Biological Activities In Vitro of Coconut (Cocos nucifera L.) Water with Different Maturities. Foods (Basel, Switzerland). 2024;13(6).

Trisha T, Naman S, Chauhan NS, Baldi A. Regulatory Framework for Flavors and Fragrances: Comprehensive Suggestive Guidelines. Flavors and Fragrances in Food Processing: Preparation and Characterization Methods: ACS Publications; 2022. p. 479-506.

Yuan J, Anantharamkrishnan V, Hoye TR, Reineccius GA. Covalent Adduct Formation between β-Lactoglobulin and Flavor Compounds under Thermal Treatments That Mimic Food Pasteurization or Sterilization. Journal of agricultural and food chemistry. 2023;71(24):9481-9.

Saffarionpour S, Ottens M. Recent advances in techniques for flavor recovery in liquid food processing. Food engineering reviews. 2018;10:81-94.

Boichot V, Muradova M, Nivet C, Proskura A, Heydel J-M, Canivenc-Lavier M-C, et al. The role of perireceptor events in flavor perception. Frontiers in Food Science and Technology. 2022;2.

Du X, Routray J, Williams C, Weng Y. Association of refreshing perception with volatile aroma compounds, organic acids, and soluble solids in freshly consumed cucumber fruit. ACS Food Science & Technology. 2022;2(9):1495-506.

Zhang M, Xing S, Fu C, Fang F, Liu J, Kan J, et al. Effects of Drying Methods on Taste Components and Flavor Characterization of Cordyceps militaris. Foods (Basel, Switzerland). 2022;11(23):3933.

Dou L, Liu C, Yang Z, Su R, Chen X, Hou Y, et al. Effects of oxidative stability variation on lamb meat quality and flavor during postmortem aging. Journal of Food Science. 2022;87(6):2578-94.

Chen X, Zhang W, Quek SY, Zhao L. Flavor–food ingredient interactions in fortified or reformulated novel food: Binding behaviors, manipulation strategies, sensory impacts, and future trends in delicious and healthy food design. Comprehensive Reviews in Food Science and Food Safety. 2023;22(5):4004-29.

Zheng Y, Zhang C, Ren D, Bai R, Li W, Wang J, et al. Headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS) and odor activity value (OAV) to reveal the flavor characteristics of ripened Pu-erh tea by co-fermentation. Frontiers in Nutrition. 2023;10:1138783.

Liu Y, Yang C, Wang Q, Zhang J, Zhang L. Identification and confirmation of key compounds causing cooked off‐flavor in heat‐treated tomato juice. Journal of Food Science. 2022;87(6):2515-26.

Liua Y, Liua G, Li Lia SY, Lia J. Comparative Analysis of Volatile Flavor Compounds of Different Pot-stewed Lotus Rhizomes by SPME-GC-MS and E-nose. Science & Technology.6(3):380-90.

Adame-Soto P, Aréchiga-Carvajal E, González-Herrera S, Moreno-Jiménez M, Rutiaga-Quiñones O. Characterization of mating type on aroma production and metabolic properties wild Kluyveromyces marxianus yeasts. World Journal of Microbiology and Biotechnology. 2023;39(8):216.

Kim S, Park JM, Kim CH. Ethanol production using whole plant biomass of Jerusalem artichoke by Kluyveromyces marxianus CBS1555. Applied biochemistry and biotechnology. 2013;169:1531-45.

Camargo D, Gomes SD, Sene L. Ethanol production from sunflower meal biomass by simultaneous saccharification and fermentation (SSF) with Kluyveromyces marxianus ATCC 36907. Bioprocess and Biosystems Engineering. 2014;37:2235-42.

da Costa JA, Marques Jr JE, Gonçalves LRB, Rocha MVP. Enhanced enzymatic hydrolysis and ethanol production from cashew apple bagasse pretreated with alkaline hydrogen peroxide. Bioresource technology. 2015;179:249-59.

Zhang J, Zhang B, Wang D, Gao X, Sun L, Hong J. Rapid ethanol production at elevated temperatures by engineered thermotolerant Kluyveromyces marxianus via the NADP (H)-preferring xylose reductase-xylitol dehydrogenase pathway. Metabolic Engineering. 2015;31:140-52.

Saini JK, Agrawal R, Satlewal A, Saini R, Gupta R, Mathur A, et al. Second generation bioethanol production at high gravity of pilot-scale pretreated wheat straw employing newly isolated thermotolerant yeast Kluyveromyces marxianus DBTIOC-35. RSC Advances. 2015;5(47):37485-94.

Li P, Fu X, Li S, Zhang L. Engineering TATA-binding protein Spt15 to improve ethanol tolerance and production in Kluyveromyces marxianus. Biotechnology for biofuels. 2018;11:1-13.

Sivarathnakumar S, Jayamuthunagai J, Baskar G, Praveenkumar R, Selvakumari IAE, Bharathiraja B. Bioethanol production from woody stem Prosopis juliflora using thermo tolerant yeast Kluyveromyces marxianus and its kinetics studies. Bioresource technology. 2019;293:122060.

Lin S-P, Kuo T-C, Wang H-T, Ting Y, Hsieh C-W, Chen Y-K, et al. Enhanced bioethanol production using atmospheric cold plasma-assisted detoxification of sugarcane bagasse hydrolysate. Bioresource technology. 2020;313:123704.

Demiray E, Kut A, Karatay SE, Dönmez G. Usage of soluble soy protein on enzymatically hydrolysis of apple pomace for cost-efficient bioethanol production. Fuel. 2021;289:119785.

Patel AK, Saini JK, Singhania RR. Development of multiple inhibitor tolerant yeast via adaptive laboratory evolution for sustainable bioethanol production. Bioresource technology. 2022;344:126247.

Löbs A-K, Schwartz C, Thorwall S, Wheeldon I. Highly multiplexed CRISPRi repression of respiratory functions enhances mitochondrial localized ethyl acetate biosynthesis in Kluyveromyces marxianus. ACS Synthetic Biology. 2018;7(11):2647-55.

KOYANAGI T. Genetic engineering of Kluyveromyces marxianus for effective production of the rose-like odor 2-phenylethanol. Noda Institute for Scientific Research GRANT. 2013.

de Lima LA, Diniz RHS, de Queiroz MV, Fietto LG, da Silveira WB. Screening of yeasts isolated from Brazilian environments for the 2-phenylethanol (2-PE) production. Biotechnology and bioprocess engineering. 2018;23:326-32.

Rajkumar AS, Morrissey JP. Rational engineering of Kluyveromyces marxianus to create a chassis for the production of aromatic products. Microbial Cell Factories. 2020;19:1-19.

Alonso-Vargas M, Téllez-Jurado A, Gómez-Aldapa CA, Ramírez-Vargas MdR, Conde-Báez L, Castro-Rosas J, et al. Optimization of 2-phenylethanol production from sweet whey fermentation using Kluyveromyces marxianus. Fermentation. 2022;8(2):39.

Cheon Y, Kim J-S, Park J-B, Heo P, Lim JH, Jung GY, et al. A biosynthetic pathway for hexanoic acid production in Kluyveromyces marxianus. Journal of biotechnology. 2014;182:30-6.

Perpetuini G, Tittarelli F, Battistelli N, Suzzi G, Tofalo R. γ‐aminobutyric acid production by Kluyveromyces marxianus strains. Journal of Applied Microbiology. 2020;129(6):1609-19.

Guneser O, Yuceer YK, Hosoglu MI, Togay SO, Elibol M. Production of flavor compounds from rice bran by yeasts metabolisms of Kluyveromyces marxianus and Debaryomyces hansenii. Brazilian Journal of Microbiology. 2022;53(3):1533-47.

Güneşer O, Demirkol A, Karagül Yüceer Y, Özmen Toğay S, İşleten Hoşoğlu M, Elibol M. Bioflavour production from tomato and pepper pomaces by Kluyveromyces marxianus and Debaryomyces hansenii. Bioprocess Biosyst Eng. 2015;38(6):1143-55.

Kılmanoğlu H, Hoşoğlu Mİ, Güneşer O, Yüceer YK. Optimization of pretreatment and enzymatic hydrolysis conditions of tomato pomace for production of alcohols and esters by Kluyveromyces marxianus. Lwt. 2021;138:110728.

Morrissey JP, Etschmann MM, Schrader J, de Billerbeck GM. Cell factory applications of the yeast Kluyveromyces marxianus for the biotechnological production of natural flavour and fragrance molecules. Yeast. 2015;32(1):3-16.

Leonel L, Arruda P, Chandel A, Felipe M, Sene L. Kluyveromyces marxianus: A potential biocatalyst of renewable chemicals and lignocellulosic ethanol production. Critical Reviews in Biotechnology. 2021;41(8):1131-52.

Belem M, Lee B. Production of bioingredients from Kluyveromyces marxianus grown on whey: an alternative. Critical Reviews in Food Science and Nutrition. 1998;38(7):565-98.

Kagkli D-M, Tâche R, Cogan TM, Hill C, Casaregola S, Bonnarme P. Kluyveromyces lactis and Saccharomyces cerevisiae, two potent deacidifying and volatile-sulphur-aroma-producing microorganisms of the cheese ecosystem. Applied microbiology and biotechnology. 2006;73:434-42.

Galvão MdS. Processo biotecnológico para obtenção dos compostos 2-feniletanol, acetato de 2-feniletil e B-cariofileno pela utilização de resíduo de goiaba. 2014.

Jenq W, Speckman RA, Crang RE, Steinberg MP. Enhanced conversion of lactose to glycerol by Kluyveromyces fragilis utilizing whey permeate as a substrate. Applied and environmental microbiology. 1989;55(3):573-8.

Barbosa MDFS, Silva DO, Pinheiro AJR, Guimarães WV, Borges AC. Production of Beta-D-galactosidase from Kluyveromyces fragilis grown in cheese whey. Journal of dairy science. 1985;68(7):1618-23.




How to Cite

Aldhalemi, A. A., AL-Shamary, E. I., Aldhalemi, M. A., & Lahhob, Q. R. (2024). Biotechnological Utilization of Kluyveromyces (3 Strains) for Flavor Compound Production from Agricultural Wastes". International Journal of Biological Engineering and Agriculture, 3(3), 219–246. Retrieved from