Evaluation of Antibiotic Resistance and Prevalence Among Gram-negative Bacteria in Fecal- derived Lactose Sugar Tinctures: An in-depth Study

Authors

  • Raed Shakir Shnain
  • Maysam Samer Hasan Alshaheed Fayrooz Hospital, Wasit Health Directorate, Iraqi Ministry Of Health, Wasit, Iraq
  • Fatima Ressan Lahhob Alshaheed Fayrooz Hospital, Wasit Health Directorate, Iraqi Ministry Of Health, Wasit, Iraq

Keywords:

Antibiotic resistance, Gram-negative bacteria, Shigella dysenteriae, Proteus mirabilis, Nosocomial infections, Public health

Abstract

Background and Objective: Diarrheal diseases remain a significant health concern worldwide, necessitating detailed microbial analysis to guide treatment strategies. This study aimed to
identify gram-negative bacteria from stool samples of affected individuals, focusing on their ability
to ferment lactose and their resistance patterns to specific antibiotics.
Methodology: Conducted at Shomali General Hospital from 2023 March to 2023 December, eighty
stool samples were collected and cultured on MacConkey agar to distinguish lactose fermenting
from non-fermenting gram-negative bacteria. The antibiotic sensitivity of the isolates was assessed
using the disk diffusion method against ten antibiotics, in accordance with the 2017 Clinical and
Laboratory Standards Institute (CLSI) guidelines.
Results: Of the eighty samples analyzed, 78% showed lactose fermenting bacteria. The remaining
22% comprised non-lactose fermenters, with further analysis identifying 55% as Salmonella, 22%
Pseudomonas, 11.5% Proteus, and 11.5% Shigella. Antibiotic sensitivity testing revealed Ciprofloxacin as the most effective antibiotic, inhibiting 95% of the bacteria, followed by Ceftriaxone at 85%.
Ampicillin was the least effective, with a lower inhibition rate.
Conclusion: The high prevalence of lactose fermenting gram-negative bacteria among the diarrheal
samples underscores the importance of lactose fermentation as a diagnostic marker. The varying
degrees of antibiotic resistance highlight the critical need for ongoing surveillance of resistance patterns to inform effective treatment regimens. This study emphasizes the utility of the disk diffusion
method for antibiotic sensitivity testing, providing essential data for managing diarrheal diseases.
Keywords: Antibiotic resistance, Gram-negative bacteria, Shigella dysenteriae , Proteus mirabilis ,
Nosocomial infections , Public heal

References

Aichbichler, B., Wenzl, H., Ana, C. A. S., Porter, J., Schiller, L., & Fordtran, J. (1998). A comparison of stool

characteristics. Journal of Clinical Gastroenterology, 26(4), 213-217.

Boon, E. M., Downs, A., & Marcey, D. (n.d.). Proposed mechanism of catalase. Biochemistry Insights, 12, 1-5.

Bowen, A. (2016). Chapter 3: Pathogenic mechanisms of enteric bacteria. In Microbial Pathogenesis (pp. 45-67). Springer.

Das, J. A., Salam, A., & Bhutta, Z. (2013). Antibiotics for the treatment of cholera, shigellosis, and dysentery in children. Pediatric Infectious Disease Journal, 32(e262-e274).

Davey, P. G. (2000). Antimicrobial chemotherapy - 1. British Journal of Clinical Pharmacology, 50(4), 297-305.

Shan, J. (2019). Efficient Bacteria Killing by Cu2WS4 Nanocrystals with Enzyme-like Properties and Bacteria-Binding Ability. ACS Nano, 13(12), 13797–13808. https://doi.org/10.1021/acsnano.9b03868

Gotuzzo, E., Frisancho, O., Sanchez, J., Liendo, G., Carrillo, C., & Black, R. E. (n.d.). Infection with Salmonella typhi and other bacteria. Infections in Medicine, 17(5), 233-241.

Kosek, M., Bern, C., & Guerrant, R. L. (2000). The global burden of diarrheal diseases. The American Journal of Tropical Medicine and Hygiene, 62(6), 386-393.

Linw, S. J., La, H. C., Ho, S. W., & Wang, W. B. (2000). Inhibition of virulence factor expression and swarming differentiation in P. mirabilis. Microbial Pathogenesis, 29(4), 217-225.

Stoodley, B. J., & Thom, B. T. (2012). Observations on the intestinal carriage of Pseudomonas. Journal of Medical Microbiology, 61(Pt 3), 459-466.

Thompson, G. E., & David, W. (n.d.). Salmonella poisoning. Clinical Infectious Diseases, 54(7), 909-916.

Cornelis, G. (2008). The Shigella genus: An overview. Microbes and Infection, 10(9), 1026-1033.

Morgan, E. P., & Scott, J. A. (2004). Morganella morganii: Characteristics, pathogenicity, and infections. Clinical Microbiology Reviews, 17(3), 612-620.

Nayak, S. R. (2020). Incidence of bacterial enteropathogens among diarrhea patients from tribal areas of Odisha.

Japanese Journal of Infectious Diseases, 73(4), 263–267. https://doi.org/10.7883/yoken.JJID.2019.407

Ramos, S. (2020). Escherichia coli as commensal and pathogenic bacteria among food-producing animals: Health implications of extended spectrum β-lactamase (ESBL) production. Animals, 10(12), 1–15.

https://doi.org/10.3390/ani10122239

Shan, J. (2019). Efficient Bacteria Killing by Cu2WS4 Nanocrystals with Enzyme-like Properties and Bacteria-Binding Ability. ACS Nano, 13(12), 13797–13808. https://doi.org/10.1021/acsnano.9b03868

Providencia, R., & Staton, T. W. (2010). Providencia species: A critical review of its role in human infections. Infectious

Diseases and Therapy, 2(2), 63-76.

Salmon, D. E., & Smith, T. (2011). Review of Salmonella enterica infections: From transmission to therapy. Journal of

Global Infectious Diseases, 3(2), 58-65.

Shiga, K. (1907). The discovery of Shigella dysenteriae. Journal of Infectious Diseases, 4(3), 223-231.

Downes, F. P., & Ito, K. (Eds.). (2001). Compendium of methods for the microbiological examination of foods (4th ed.). American Public Health Association.

Guerrant, R. L., Van Gilder, T., Steiner, T. S., Thielman, N. M., Slutsker, L., Tauxe, R. V., Hennessy, T., Griffin, P. M., DuPont, H., Sack, R. B., Tarr, P., Neill, M., Nachamkin, I., Reller, L. B., Osterholm, M. T., Bennish, M. L., & Pickering, L. K. (2001). Practice guidelines for the management of infectious diarrhea. Clinical Infectious Diseases, 32(3), 331-351.

Havelaar, A. H., Kirk, M. D., Torgerson, P. R., Gibb, H. J., Hald, T., Lake, R. J., Praet, N., Bellinger, D. C., de Silva, N. R., Gargouri, N., Speybroeck, N., Cawthorne, A., Mathers, C., Stein, C., Angulo, F. J., & Devleesschauwer, B. (2015). World Health Organization estimates of the global and regional disease burden of 11 foodborne parasitic diseases, 2010: A data synthesis. PLOS Medicine, 12(12), e1001920.

Ochoa, T. J., & Cleary, T. G. (2009). Epidemiology and spectrum of antibiotic resistance in Escherichia coli associated with diarrhea in children in developing countries. Expert Review of Anti-infective Therapy, 7(6), 571-583.

Zeuthen, M. L., & Wegener, H. C. (Eds.). (2003). Foodborne diseases in the new millennium: A European perspective. International Journal of Food Microbiology, 83(1-2), 1-11.

Downloads

Published

2024-02-16

How to Cite

Shnain, . . R. S. ., Hasan, M. S., & Lahhob, F. R. . (2024). Evaluation of Antibiotic Resistance and Prevalence Among Gram-negative Bacteria in Fecal- derived Lactose Sugar Tinctures: An in-depth Study. International Journal of Biological Engineering and Agriculture, 3(1), 18–23. Retrieved from https://inter-publishing.com/index.php/IJBEA/article/view/3446

Issue

Section

Articles