Conversion of Waste to Energy in Iraq: A Review

Authors

  • Mustafa Kameran Alsendi MSc in Engineering, Technology, and Environmental Management

DOI:

https://doi.org/10.51699/ijbea.v2i9.2596

Keywords:

Waste to energy WTE, Solid waste management, Landfills, Recyclable materials

Abstract

Waste-to-energy (WTE) is a process of converting waste into electricity or heat. It is a sustainable and environmentally friendly way to manage waste, and it can help to reduce greenhouse gas emissions and reliance on fossil fuels. Iraq generates a large amount of waste each year, and WTE has the potential to play a significant role in meeting the country's energy needs. This research paper provides an overview of WTE technologies, their benefits and challenges, and their potential for application in Iraq. It also reviews the current status of WTE development in Iraq and identifies opportunities for future growth. The paper concludes that WTE has the potential to be a valuable tool for Iraq's waste management and energy sectors. However, it is important to carefully consider the specific needs of Iraq when selecting and implementing WTE technologies.

 

References

M. Ali Al-Mohammed, G. Ulutagay, and W. M. S. Alabdraba, “The reality of solid waste management in Iraq and ways of development,” Tikrit J. Eng. Sci., vol. 28, no. 3, pp. 1–20, 2021, doi: 10.25130/tjes.28.3.01.

A. K. S. Al-Sayyab, A. Mota-Babiloni, and J. Navarro-Esbrí, “Renewable and waste heat applications for heating, cooling, and power generation based on advanced configurations,” Energy Convers. Manag., vol. 291, no. May, 2023, doi: 10.1016/j.enconman.2023.117253.

A. Raihan, D. Ahmed, N. Alam, M. Islam, and O. Faruk, “Nexus between carbon emissions , economic growth , renewable energy use , and technological innovation towards achieving environmental sustainability in Bangladesh,” Clean. Energy Syst., vol. 3, no. August, p. 100032, 2022, doi: 10.1016/j.cles.2022.100032.

V. R. Dhawale, “Methane Production from Organic Waste – An Overview,” no. December, 2021.

L. Zhang, W. Bai, and J. Ren, “Waste-to-Energy: A Midas Touch for Turning Waste into Energy,” Energies, vol. 16, no. 5, pp. 1–6, 2023, doi: 10.3390/en16052238.

T. Hong, P. Pinson, Y. Wang, R. Weron, D. Yang, and H. Zareipour, “Energy Forecasting: A Review and Outlook,” IEEE Open Access J. Power Energy, vol. 7, no. April, pp. 376–388, 2020, doi: 10.1109/OAJPE.2020.3029979.

Z. Wang, Y. Teng, H. Jin, and Z. Chen, “Urban waste disposal capacity and its energy supply performance optimal model based on multi-energy system coordinated operation,” IEEE Access, vol. 9, pp. 32229–32238, 2021, doi: 10.1109/ACCESS.2021.3060421.

O. M. Butt et al., “Hydrogen as Potential Primary Energy Fuel for Municipal Solid Waste Incineration for a Sustainable Waste Management,” IEEE Access, vol. 10, no. November, pp. 114586–114596, 2022, doi: 10.1109/ACCESS.2022.3216706.

B. S. Ramadan, I. Rachman, N. Ikhlas, S. B. Kurniawan, M. F. Miftahadi, and T. Matsumoto, “A comprehensive review of domestic-open waste burning: recent trends, methodology comparison, and factors assessment,” J. Mater. Cycles Waste Manag., vol. 24, no. 5, pp. 1633–1647, 2022, doi: 10.1007/s10163-022-01430-9.

K. Reji Kumar and E. N. Satheesh, “Developing an Efficient Waste Management System: An Approach by Using Some Methods of Mathematical Modelling,” IOP Conf. Ser. Mater. Sci. Eng., vol. 872, no. 1, 2020, doi: 10.1088/1757-899X/872/1/012181.

Y. Tian, S. Dai, and J. Wang, “Environmental standards and beneficial uses of waste-to-energy (WTE) residues in civil engineering applications,” Waste Dispos. Sustain. Energy, no. 0123456789, 2023, doi: 10.1007/s42768-023-00140-8.

M. Hizami, M. Yusoff, and R. Zakaria, “Waste to energy - A review WASTE TO ENERGY – A REVIEW,” no. October, pp. 1–6, 2010.

H. Roy et al., “A Review on Characteristics, Techniques, and Waste-to-Energy Aspects of Municipal Solid Waste Management: Bangladesh Perspective,” Sustain., vol. 14, no. 16, 2022, doi: 10.3390/su141610265.

A. Islamova and A. Islamova, “the Combustion Combustion of Combustion Fuels from the Combustion of Waste-Derived,” Energies, 2022.

I. Khan, S. Chowdhury, and K. Techato, “Waste to Energy in Developing Countries-A Rapid Review: Opportunities, Challenges, and Policies in Selected Countries of Sub-Saharan Africa and South Asia towards Sustainability,” Sustain., vol. 14, no. 7, 2022, doi: 10.3390/su14073740.

I. Sohoo, M. Ritzkowski, Z. A. Sohu, S. Ö. Cinar, Z. K. Chong, and K. Kuchta, “Estimation of methane production and electrical energy generation from municipal solid waste disposal sites in Pakistan,” Energies, vol. 14, no. 9, 2021, doi: 10.3390/en14092444.

F. Fahy and G. Goggins, An Introduction to Energy Demand Challenges in Europe. 2019. doi: 10.1007/978-3-030-20339-9_1.

W. Czekała, “applied sciences Modern Technologies for Waste Management : A Review,” 2023.

A. R. Hama, T. A. Tahir, and B. J. Ali, “A study on solid waste generation, composition and management in Sulaimania city, Kurdistan region, Iraq,” IOP Conf. Ser. Earth Environ. Sci., vol. 779, no. 1, 2021, doi: 10.1088/1755-1315/779/1/012049.

M. A. Al-flaiyeh, “Electrical energy from waste and garbage : General review Introduction :,” NTU J. Renew. Energy, vol. 2, no. 1, pp. 18–26, 2022, [Online]. Available: https://www.iasj.net/iasj/download/c53f986e6e8a5ce0

A. Wisniewski, M. Zimmerman, T. Crews, A. Haulbrook, D. C. Fitzgerald, and J. J. Sistino, “Reducing the Impact of Perfusion Medical Waste on the Environment,” J. Extra. Corpor. Technol., vol. 52, no. 2, pp. 135–141, 2020, doi: 10.1182/ject-1900023.

A. Temireyeva, K. Zhunussova, M. Aidabulov, C. Venetis, Y. Sarbassov, and D. Shah, “Greenhouse Gas Emissions-Based Development and Characterization of Optimal Scenarios for Municipal Solid and Sewage Sludge Waste Management in Astana City,” 2022.

C. G. Awuchi, “Industrial Waste Management : Brief Survey and Advice to Cottage , Small and Medium Scale Industries in Uganda INDUSTRIAL WASTE MANAGEMENT : BRIEF SURVEY AND ADVICE TO COTTAGE , SMALL AND MEDIUM SCALE INDUSTRIES IN UGANDA Department of Biological and Envi,” no. February, 2020.

I. Alyaseri, “Estimating Generation Rate and Composition of Solid Wastes for Management Improvement in Almuthanna, Iraq,” ARPN J. Eng. Appl. Sci., vol. 15, no. 20, pp. 2220–2227, 2020.

M. K. Mensoor, “Medical waste management in Iraq: a case study of Baghdad,” Waste Dispos. Sustain. Energy, vol. 2, no. 4, pp. 329–335, 2020, doi: 10.1007/s42768-020-00055-8.

S. Thameel, S. Al-Chalabi, A. Mustafa, and A. Mohsin, “An Evaluation of Health Care Waste Generation and Disposal at Ramadi Teaching Hospital in Iraq,” Iraqi J. Civ. Eng., vol. 16, no. 1, pp. 1–9, 2022, doi: 10.37650/ijce.2022.172880.

G. Ulutagay, “T ikrit J ournal o f E ngineering S ciences The reality of solid waste management in Iraq and ways of development,” vol. 28, no. July, pp. 1–20, 2021.

Z. R. Kadhim, S. H. Ali, D. S. Barbaz, and A. S. Alnagar, “The Economic and Environmental Effects of Recycling Plant Agricultural Wastes in Iraq (Yellow Maize Production Farms in Babil Province - A Case Study),” IOP Conf. Ser. Earth Environ. Sci., vol. 1060, no. 1, 2022, doi: 10.1088/1755-1315/1060/1/012145.

A. Hamza, “Municipal Solid Waste Quantity, Ingredients, and Site Disposal Problems in Pshdar District in Sulaimanyah: Iraqi Kurdistan Region, Iraq,” Kufa J. Eng., vol. 11, no. 4, pp. 1–18, 2021, doi: 10.30572/2018/kje/110401.

B. A. Ghani and N. M. Faleh, “Waste Recycling : Waste to Energy System,” vol. 2, no. 2, 2023.

M. Akanni, O. Mohammed, and T. Raphael, “Waste ‐ to ‐ energy nexus : An overview of technologies and implementation for sustainable development,” Clean. Energy Syst., vol. 3, no. October, p. 100034, 2022, doi: 10.1016/j.cles.2022.100034.

P. D. Nguyen et al., “Flameless combustion of low calorific value gases, experiments, and simulations with advanced radiative heat transfer modeling,” Phys. Fluids, vol. 34, no. 4, 2022, doi: 10.1063/5.0087077.

N. J. Themelis, “Energy and materials recovery from post-recycling wastes: WTE,” Waste Dispos. Sustain. Energy, no. 0123456789, 2023, doi: 10.1007/s42768-023-00138-2.

Y. S. A. B. Tisi, F. A. Matos, and M. L. N. M. Carneiro, “Development of waste-to-energy through integrated sustainable waste management: the case of ABREN WTERT Brazil towards changing status quo in Brazil,” Waste Dispos. Sustain. Energy, no. 0123456789, 2023, doi: 10.1007/s42768-022-00127-x.

A. N. Efremov and A. A. Dudolin, “Comparative analysis of MSW thermal utilization technologies for environment friendly WTE plant,” J. Phys. Conf. Ser., vol. 1370, no. 1, 2019, doi: 10.1088/1742-6596/1370/1/012057.

M. Ezzat Salem, H. Abd El-Halim, A. Refky, and I. A. Nassar, “Potential of Waste to Energy Conversion in Egypt,” J. Electr. Comput. Eng., vol. 2022, 2022, doi: 10.1155/2022/7265553.

N. Vukovic and E. Makogon, “Waste-to-Energy Generation: Complex Efficiency Analysis of Modern Technologies,” Sustain., vol. 14, no. 21, 2022, doi: 10.3390/su142113814.

Q. Wang, Z. Zhang, M. Wang, and B. Wang, “Smart Management Platform for Landfilling of Waste after Mechanical Biological Treatment,” Adv. Civ. Eng., vol. 2022, 2022, doi: 10.1155/2022/5376066.

G. Prasannamedha and P. S. Kumar, “Hydrothermal Carbonization of Waste Sugarcane Bagasse for the Effective Removal of Emerging Contaminants from Aqueous Solution,” Adsorpt. Sci. Technol., vol. 2022, 2022, doi: 10.1155/2022/8684737.

N. Wang, J. Hu, Z. Tan, J. Li, L. Dong, and N. Mei, “Reorganization Reaction Characteristics between Different Volatile Content and Waste Pyrolysis,” Math. Probl. Eng., vol. 2022, 2022, doi: 10.1155/2022/5709092.

Y. Ayub, J. Zhou, J. Ren, T. Shi, W. Shen, and C. He, “High-Dimensional Model Representation-Based Surrogate Model for Optimization and Prediction of Biomass Gasification Process,” Int. J. Energy Res., vol. 2023, 2023, doi: 10.1155/2023/7787947.

J. M. Kihila, K. Wernsted, and M. Kaseva, “Waste segregation and potential for recycling -A case study in Dar es Salaam City, Tanzania,” Sustain. Environ., vol. 7, no. 1, 2021, doi: 10.1080/27658511.2021.1935532.

M. W. Graham et al., “Research Progress on Greenhouse Gas Emissions From Livestock in Sub-Saharan Africa Falls Short of National Inventory Ambitions,” Front. Soil Sci., vol. 2, no. August, pp. 1–18, 2022, doi: 10.3389/fsoil.2022.927452.

X. Peng et al., Recycling municipal, agricultural and industrial waste into energy, fertilizers, food and construction materials, and economic feasibility: a review, vol. 21, no. 2. Springer International Publishing, 2023. doi: 10.1007/s10311-022-01551-5.

R. Son, D. Stratoulias, H. C. Kim, and J. H. Yoon, “Estimation of surface PM2.5 concentrations from atmospheric gas species retrieved from TROPOMI using deep learning: Impacts of fire on air pollution over Thailand,” Atmos. Pollut. Res., vol. 14, no. 10, p. 101875, 2023, doi: 10.1016/j.apr.2023.101875.

X. Dong et al., “Mechanical characterizations, recyclability of thermoplastics through melt grafting a dynamic covalent network onto polyethylene,” Polym. Test., vol. 122, no. February, p. 108005, 2023, doi: 10.1016/j.polymertesting.2023.108005.

G. Colangelo, F. Facchini, L. Ranieri, G. Starace, and M. Vitti, “Assessment of carbon emissions’ effects on the investments in conventional and innovative waste-to-energy treatments,” J. Clean. Prod., vol. 388, no. January, p. 135849, 2023, doi: 10.1016/j.jclepro.2023.135849.

Y. Ishimura, “The effects of the containers and packaging recycling law on the domestic recycling of plastic waste: Evidence from Japan,” Ecol. Econ., vol. 201, no. June, p. 107535, 2022, doi: 10.1016/j.ecolecon.2022.107535.

M. Sörengård, I. Travar, D. B. Kleja, and L. Ahrens, “Fly ash-based waste for ex-situ landfill stabilization of per- and polyfluoroalkyl substance (PFAS)-contaminated soil,” Chem. Eng. J. Adv., vol. 12, no. September, 2022, doi: 10.1016/j.ceja.2022.100396.

D. Vernez et al., “Polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) soil contamination in Lausanne, Switzerland: Combining pollution mapping and human exposure assessment for targeted risk management,” Environ. Pollut., vol. 316, no. October 2022, 2023, doi: 10.1016/j.envpol.2022.120441.

A. H. Salum, B. H. Ismail, and S. H. Sadik, “Opting of an Organic Rankine Cycle Based on Waste Heat Recovery System to Produce Electric Energy in Cement Plant,” Iraqi J. Ind. Res., vol. 9, no. 2, pp. 91–99, 2022, doi: 10.53523/ijoirvol9i2id194.

S. Al-shammari, A. Karamallah, and sattar Habeeb, “Programing and Procedure Design of Stand-alone PV System for Clean Energy Home Supply in Baghdad,” Eng. Technol. J., vol. 39, no. 7, pp. 1164–1173, 2021, doi: 10.30684/etj.v39i7.1976.

A. Nadhum and K. Erzaij, “Evaluating Implementation of Electric Power Generation Projects in Iraq Evaluating Implementation of Electric Power Generation Projects in Iraq,” no. September, 2020, doi: 10.1088/1757-899X/901/1/012034.

K. Kalkanis, D. E. Alexakis, and E. Kyriakis, “Transforming Waste to Wealth, Achieving Circular Economy,” Circ. Econ. Sustain., pp. 1541–1559, 2022, doi: 10.1007/s43615-022-00225-2.

S. Szwaja, M. Zajemska, M. Szwaja, and A. Maroszek, “Integration of waste biomass thermal processing technology with a metallurgical furnace to improve its efficiency and economic benefit,” Clean Technol. Environ. Policy, vol. 25, no. 2, pp. 577–587, 2023, doi: 10.1007/s10098-021-02195-9.

N. Peng and X. Zhang, “The impact of environmental regulations on the location choice of newly built polluting firms : based on the perspective of new economic geography,” Environ. Sci. Pollut. Res., pp. 59802–59815, 2022, doi: 10.1007/s11356-022-19956-8.

A. Mayer, “Fossil fuel dependence and energy insecurity,” Energy. Sustain. Soc., pp. 1–14, 2022, doi: 10.1186/s13705-022-00353-5.

E. E. Coracero, R. B. J. Gallego, K. J. M. Frago, and R. J. R. Gonzales, “A Long-Standing Problem : A Review on the Solid Waste Management in the Philippines,” no. December, 2021, doi: 10.47540/ijsei.v2i3.144.

Downloads

Published

2023-09-30

How to Cite

Mustafa Kameran Alsendi. (2023). Conversion of Waste to Energy in Iraq: A Review. International Journal of Biological Engineering and Agriculture, 2(9), 63–72. https://doi.org/10.51699/ijbea.v2i9.2596