Choosing the Mass of an Ingot of a Rational Shape for Bloom Rolling

Authors

  • Nigora M. Rizaeva Tashkent State University, Tashkent, Uzbekistan

Keywords:

spindle, ingot, bloom, universal spindle, wire rod

Abstract

This article focuses on enhancing technological processes to elevate the quality of the final product, specifically by optimizing the weight and configuration of the ingot. The aim is to bolster the durability and performance of critical components in industrial equipment units, such as rolls, beds, and universal spindles. By meticulously selecting the optimal weight and shape of the ingot, the study endeavors to fortify the structural integrity and operational efficiency of these equipment parts. Through innovative technological advancements and meticulous design considerations, the research aims to address key challenges associated with material strength and performance durability. The overarching goal is to enhance the overall quality and reliability of industrial equipment units, ultimately contributing to improved productivity and operational efficiency in various industrial sectors. Through this article, insights are provided into the innovative approaches and methodologies employed to optimize ingot weight and configuration for enhanced performance and durability in industrial applications.

References

V. Chubenko, А. Khinotskaya, T. Yarosh, L. Saithareiev, and D. Baskanbayeva, “Investigation of energy-power parameters of thin sheets rolling to improve energy efficiency,” Iop Conf. Ser. Earth Environ. Sci., vol. 1049, no. 1, p. 012051, 2022, doi: 10.1088/1755-1315/1049/1/012051.

M. Abbaszadeh et al., “Numerical investigation of the effect of rolling on the localized stress and strain induction for wire + arc additive manufactured structures,” J. Mater. Eng. Perform., vol. 28, no. 8, pp. 4931–4942, 2019, doi: 10.1007/s11665-019-04249-y.

E. Markov, V. Kukhar, N. Zlygoriev, A. Shapoval, S. Khvashchynskyi, and U. Zhytnikov, “Improvement of upsetting process of four-beam workpieces based on computerized and physical modeling,” Fme Trans., vol. 48, no. 4, pp. 946–953, 2020, doi: 10.5937/fme2004946m.

E. Karimi-Sibaki et al., “Experimental and numerical investigations of arc plasma expansion in an industrial vacuum arc remelting (var) process,” Sci. Rep., vol. 12, no. 1, 2022, doi: 10.1038/s41598-022-24595-7.

P. Anyalebechi, “A qualitative study of the influence of grooved mold surface topography on the formation of surface marks on as-cast ingots of aluminum alloy 3003,” Mater. Sci. Appl., vol. 11, no. 04, pp. 263–284, 2020, doi: 10.4236/msa.2020.114018.

F. Yu, X. Wang, T. Huang, and D. Chao, “Effect of grain refiner on fracture toughness of 7050 ingot and plate,” Materials, vol. 14, no. 21, p. 6705, 2021, doi: 10.3390/ma14216705.

Y. Sumi, S. Narita, and M. Yamashita, “The macrosegregation behaviour of fe-c-cr-mo type steel in laboratory scale model ingot.,” Iop Conf. Ser. Mater. Sci. Eng., vol. 1274, no. 1, p. 012048, 2023, doi: 10.1088/1757-899x/1274/1/012048.

W. Su, Z. Guan, J. Li, Z. Zhang, and J. Li, “Numerical investigation on the effect of thermal gate moving rate on directional solidification process,” Silicon, vol. 15, no. 7, pp. 3103–3112, 2022, doi: 10.1007/s12633-022-02235-z.

I. Najjar and M. Elmahdy, “Study of mechanical properties and wear resistance of nanostructured al 1100/tio2 nanocomposite processed by accumulative roll bonding,” J. Compos. Mater., vol. 56, no. 17, pp. 2727–2738, 2022, doi: 10.1177/00219983221103636.

J.-H. Kang and Y.-G. Ko, “Strengthening of 0.18 wt % C Steel by Cold Differential Speed Rolling,” Materials, vol. 15, no. 10, p. 3717, May 2022, doi: 10.3390/ma15103717.

S. Sattarpanah Karganroudi et al., “Anisotropic Behavior of Al1050 through Accumulative Roll Bonding,” Materials, vol. 14, no. 22, p. 6910, Nov. 2021, doi: 10.3390/ma14226910.

J. Chen, Z. Feng, J. Yi, and J. Yang, “Effect of low temperature rolling on mechanical properties and corrosion resistance of crconi medium entropy alloy,” Mater. Res. Express, vol. 9, no. 1, p. 016502, 2022, doi: 10.1088/2053-1591/ac45bc.

S. Dhinwal, L. Tóth, R. Lapovok, and P. Hodgson, “Tailoring one-pass asymmetric rolling of extra low carbon steel for shear texture and recrystallization,” Materials, vol. 12, no. 12, p. 1935, 2019, doi: 10.3390/ma12121935.

R. Fegade, “Numerical investigation of pull in control of rectangular aa1050 rolling ingot through the design of convex mould during direct chill casting process,” Eng. Res. Express, vol. 6, no. 1, p. 015034, 2024, doi: 10.1088/2631-8695/ad1a7c.

A. Baroutaji, S. Lenihan, and K. Bryan, “Compaction analysis and optimisation of convex-faced pharmaceutical tablets using numerical techniques,” Particuology, vol. 47, pp. 10–21, 2019, doi: 10.1016/j.partic.2018.11.002.

Y. Zhang, C. Xu, N. Liu, Y. Zhang, and Z. Xue, “Effects of weight‐compatible design on ingot solidification,” Steel Res. Int., vol. 92, no. 3, 2021, doi: 10.1002/srin.202000560.

А. П. Чекмарев, М. С. Мутьев, and К. А. Нашковцев, Калибровка прокатных валков. Москва: Металлургия, 1991.

“Постановление Президента Республики Узбекистана - «О мерах по реализации инвестиционного проекта «Строительство Ташкентского металлургического завода»,” no. ПП-2874, Apr. 2017.

В. В. Гетманец and В. Я. Шевчук, Рациональные режимы работы блюминга. Москва: Металлургия, 1990.

В. В. Бобров, В. Н. Полищук, and В. Д. Гладуш, Оптимизация нестандартных процессов прокатки. Киев: Техника, 1994.

Downloads

Published

2024-02-19

How to Cite

Rizaeva, N. M. (2024). Choosing the Mass of an Ingot of a Rational Shape for Bloom Rolling. American Journal of Science and Learning for Development, 3(2), 6–10. Retrieved from https://inter-publishing.com/index.php/AJSLD/article/view/3464

Issue

Section

Articles