Advanced Filtration Techniques in Environmental Engineering

Authors

DOI:

https://doi.org/10.51699/ajsld.v3i2.3463

Keywords:

granular filters, membrane filters, water treatment, wastewater treatment, filtration techniques, environmental engineering, air pollution control, filter design, membrane fouling, filtration efficiency

Abstract

Granular filters and membrane filters, two essential filtration methods in environmental engineering, are thoroughly examined in this study. These techniques greatly aid air pollution control problems and water and wastewater treatment. The first section of the study outlines the basic ideas that underpin each filtration technique. The mechanical particle trapping mechanisms of granular filters, their wide range of applications in water treatment, and design factors, including media kinds and layers, are all examined. On the other hand, membrane filters are closely scrutinised because of their size exclusion principles, variety of types (from microfiltration to ultrafiltration), and vital function in industrial waste treatment and desalination processes. The study goes into additional detail about the maintenance, clogging, and financial ramifications that different filtering techniques must deal with. A comparison analysis provides insights into each method's applicability for various environmental engineering applications by illuminating its efficacy, affordability, and application specificity. The study's conclusion considers the potential for growth and current and upcoming technical developments in the filtration industry. This study lays the groundwork for forthcoming advancements and uses in the field of environmental engineering while also highlighting the significance of these filtering methods in modern ecological engineering.

References

D. Lin, X. Tian, F. Wu, and B. Xing, “Fate and Transport of Engineered Nanomaterials in the Environment,” J. Environ. Qual., vol. 39, no. 6, pp. 1896–1908, Nov. 2010, doi: 10.2134/jeq2009.0423.

C. Tien and B. V. Ramarao, Granular filtration of aerosols and hydrosols, 2. ed. Amsterdam: Elsevier, 2007.

L. Golshahi, J. Abedi, and Z. Tan, “Granular filtration for airborne particles: Correlation between experiments and models,” Can. J. Chem. Eng., vol. 87, no. 5, pp. 726–731, Oct. 2009, doi: 10.1002/cjce.20215.

J. R. Coury, K. V. Thambimuthu, and R. Clift, “Capture and rebound of dust in granular bed gas filters,” Powder Technol., vol. 50, no. 3, pp. 253–265, May 1987, doi: 10.1016/0032-5910(87)80071-2.

B. M. Wenzel et al., “Filtration of dust in an intermittent moving granular bed filter: Performance and modeling,” Sep. Purif. Technol., vol. 133, pp. 108–119, Sep. 2014, doi: 10.1016/j.seppur.2014.06.051.

G. Xiao et al., “Granular bed filter: A promising technology for hot gas clean-up,” Powder Technol., vol. 244, pp. 93–99, Aug. 2013, doi: 10.1016/j.powtec.2013.04.003.

I. A. El-Hedok, L. Whitmer, and R. C. Brown, “The influence of granular flow rate on the performance of a moving bed granular filter,” Powder Technol., vol. 214, no. 1, pp. 69–76, Nov. 2011, doi: 10.1016/j.powtec.2011.07.037.

M. Shapiro, G. Laufer, and C. Gutfinger, “Electrostatically Enhanced Granular Bed Filters,” Aerosol Sci. Technol., vol. 5, no. 1, pp. 39–54, Jan. 1986, doi: 10.1080/02786828608959075.

W. Peukert and F. Löffler, “Influence of temperature on particle separation in granular bed filters,” Powder Technol., vol. 68, no. 3, pp. 263–270, Dec. 1991, doi: 10.1016/0032-5910(91)80051-J.

J. L. Guillory, F. M. Placer, and D. S. Grace, “Electrostatic enhancement of moving-bed granular filtration,” Environ. Int., vol. 6, no. 1–6, pp. 387–395, Jan. 1981, doi: 10.1016/0160-4120(81)90051-9.

Y.-S. Chen, S.-S. Hsiau, S.-C. Lai, Y.-P. Chyou, H.-Y. Li, and C.-J. Hsu, “Filtration of dust particulates with a moving granular bed filter,” J. Hazard. Mater., vol. 171, no. 1–3, pp. 987–994, Nov. 2009, doi: 10.1016/j.jhazmat.2009.06.103.

K. Chawla, Fibrous Materials, 2nd ed. Cambridge University Press, 2016. doi: 10.1017/CBO9781139342520.

R. Givehchi and Z. Tan, “An Overview of Airborne Nanoparticle Filtration and Thermal Rebound Theory,” Aerosol Air Qual. Res., vol. 14, no. 1, pp. 46–63, 2014, doi: 10.4209/aaqr.2013.07.0239.

K. M. Dorney, J. D. Baker, M. L. Edwards, S. R. Kanel, M. O’Malley, and I. E. Pavel Sizemore, “Tangential Flow Filtration of Colloidal Silver Nanoparticles: A ‘Green’ Laboratory Experiment for Chemistry and Engineering Students,” J. Chem. Educ., vol. 91, no. 7, pp. 1044–1049, Jul. 2014, doi: 10.1021/ed400686u.

U. Foerter-Barth and U. Teipel, “Characterization of particles by means of laser light diffraction and dynamic light scattering,” in Developments in Mineral Processing, vol. 13, Elsevier, 2000, pp. C1-1-C1-8. doi: 10.1016/S0167-4528(00)80003-4.

K. W. Lee and B. Y. H. Liu, “Theoretical Study of Aerosol Filtration by Fibrous Filters,” Aerosol Sci. Technol., vol. 1, no. 2, pp. 147–161, Jan. 1982, doi: 10.1080/02786828208958584.

J. Lohwacharin and S. Takizawa, “Effects of nanoparticles on the ultrafiltration of surface water,” J. Membr. Sci., vol. 326, no. 2, pp. 354–362, Jan. 2009, doi: 10.1016/j.memsci.2008.10.006.

L. Weltje, W. Den Hollander, and H. Th. Wolterbeek, “Adsorption of metals to membrane filters in view of their speciation in nutrient solution,” Environ. Toxicol. Chem., vol. 22, no. 2, pp. 265–271, Feb. 2003, doi: 10.1002/etc.5620220205.

P. Westerhoff, G. Song, K. Hristovski, and M. A. Kiser, “Occurrence and removal of titanium at full scale wastewater treatment plants: implications for TiO2 nanomaterials,” J. Environ. Monit., vol. 13, no. 5, p. 1195, 2011, doi: 10.1039/c1em10017c.

K. M. Yun, C. J. Hogan, Y. Matsubayashi, M. Kawabe, F. Iskandar, and K. Okuyama, “Nanoparticle filtration by electrospun polymer fibers,” Chem. Eng. Sci., vol. 62, no. 17, pp. 4751–4759, Sep. 2007, doi: 10.1016/j.ces.2007.06.007.

L. Windler et al., “Release of Titanium Dioxide from Textiles during Washing,” Environ. Sci. Technol., vol. 46, no. 15, pp. 8181–8188, Aug. 2012, doi: 10.1021/es301633b.

L. Tataru et al., “Studies of Humic Acid Removal from Aqueous Systems by Using Polymeric Membrane Ultrafiltration Process,” Mater. Plast., vol. 55, no. 4, pp. 680–685, Dec. 2018, doi: 10.37358/MP.18.4.5100.

Y. Zhang, Y. Chen, P. Westerhoff, and J. Crittenden, “Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles,” Water Res., vol. 43, no. 17, pp. 4249–4257, Sep. 2009, doi: 10.1016/j.watres.2009.06.005.

M. A. Bappy and M. Ahmed, “Assessment of data collection techniques in manufacturing and mechanical engineering through machine learning models,” Glob. Mainstream J. Bus. Econ. Dev. Proj. Manag., vol. 2, no. 04, pp. 15–26, 2023.

S.-W. Jeong and H. Kim, “Filtration of fullerene and copper oxide nanoparticles using surface-modified microfilters,” Environ. Monit. Assess., vol. 186, no. 9, pp. 5855–5864, Sep. 2014, doi: 10.1007/s10661-014-3824-4.

J. Y. Park, S. Lim, and K. Park, “A new approach for determination of fouling potential by colloidal nanoparticles during reverse osmosis (RO) membrane filtration of seawater,” J. Nanoparticle Res., vol. 15, no. 4, p. 1548, Apr. 2013, doi: 10.1007/s11051-013-1548-y.

L. Tataru et al., “Applications of Polymeric Membranes Ultrafiltration Process on the Retention of Bentonite Suspension,” Mater. Plast., vol. 56, no. 1, pp. 97–102, Mar. 2019, doi: 10.37358/MP.19.1.5131.

C. Levard, E. M. Hotze, G. V. Lowry, and G. E. Brown, “Environmental Transformations of Silver Nanoparticles: Impact on Stability and Toxicity,” Environ. Sci. Technol., vol. 46, no. 13, pp. 6900–6914, Jul. 2012, doi: 10.1021/es2037405.

T. Benn, B. Cavanagh, K. Hristovski, J. D. Posner, and P. Westerhoff, “The Release of Nanosilver from Consumer Products Used in the Home,” J. Environ. Qual., vol. 39, no. 6, pp. 1875–1882, Nov. 2010, doi: 10.2134/jeq2009.0363.

M. A. Kiser, P. Westerhoff, T. Benn, Y. Wang, J. Pérez-Rivera, and K. Hristovski, “Titanium Nanomaterial Removal and Release from Wastewater Treatment Plants,” Environ. Sci. Technol., vol. 43, no. 17, pp. 6757–6763, Sep. 2009, doi: 10.1021/es901102n.

T. M. Benn and P. Westerhoff, “Nanoparticle Silver Released into Water from Commercially Available Sock Fabrics,” Environ. Sci. Technol., vol. 42, no. 11, pp. 4133–4139, Jun. 2008, doi: 10.1021/es7032718.

D. A. Ladner, M. Steele, A. Weir, K. Hristovski, and P. Westerhoff, “Functionalized nanoparticle interactions with polymeric membranes,” J. Hazard. Mater., vol. 211–212, pp. 288–295, Apr. 2012, doi: 10.1016/j.jhazmat.2011.11.051.

Downloads

Published

2024-02-21

How to Cite

Rahaman, T., Hossain, M. I., & Sathi, M. A. (2024). Advanced Filtration Techniques in Environmental Engineering. American Journal of Science and Learning for Development, 3(2), 22–32. https://doi.org/10.51699/ajsld.v3i2.3463

Issue

Section

Articles