Exploring the Integration of Informed Machine Learning in Engineering Applications: A Comprehensive Review

Authors

DOI:

https://doi.org/10.51699/ajsld.v3i2.3459

Keywords:

artificial intelligence (ai), machine learning (ml), industry 4.0, mechanical engineering, predictive maintenance

Abstract

Abstract: Integrating Artificial Intelligence (AI) and Machine Learning (ML) into mechanical engineering catalyzes a transformative shift within Industry 4.0, offering unprecedented opportunities for innovation, efficiency, and problem-solving. This paper explores the pivotal role of AI and ML in reshaping mechanical engineering practices, from predictive maintenance and design optimization to quality control and supply chain management. By leveraging sophisticated algorithms and vast datasets, AI and ML enable mechanical systems to achieve higher autonomy, performance, and reliability levels. However, adopting these technologies also presents challenges, including technical hurdles, ethical considerations, and the need for specialized knowledge. Through a series of case studies, the paper illustrates successful implementations of AI and ML in mechanical engineering projects, highlighting the benefits and addressing the limitations encountered. Furthermore, it discusses the evolving role of mechanical engineers in this new landscape, emphasizing the importance of continuous learning and interdisciplinary collaboration to harness the full potential of AI and ML in Industry 4.0. The paper concludes with a forward-looking perspective on future research directions, underscoring the critical role of ethical AI and the development of robust algorithms to navigate the complexities of real-world applications.

 

Keywords: 

References

K. Bruynseels, F. Santoni De Sio, and J. Van Den Hoven, “Digital Twins in Health Care: Ethical Implications of an Emerging Engineering Paradigm,” Front. Genet., vol. 9, p. 31, Feb. 2018, doi: 10.3389/fgene.2018.00031.

B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas, “Taking the Human Out of the Loop: A Review of Bayesian Optimization,” Proc. IEEE, vol. 104, no. 1, pp. 148–175, Jan. 2016, doi: 10.1109/JPROC.2015.2494218.

M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations,” 2017, doi: 10.48550/ARXIV.1711.10561.

M. Raissi, A. Yazdani, and G. E. Karniadakis, “Hidden Fluid Mechanics: A Navier-Stokes Informed Deep Learning Framework for Assimilating Flow Visualization Data,” 2018, doi: 10.48550/ARXIV.1808.04327.

G. Rebala, A. Ravi, and S. Churiwala, An Introduction to Machine Learning. Cham: Springer International Publishing, 2019. doi: 10.1007/978-3-030-15729-6.

J. Behler and M. Parrinello, “Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces,” Phys. Rev. Lett., vol. 98, no. 14, p. 146401, Apr. 2007, doi: 10.1103/PhysRevLett.98.146401.

S. Dura-Bernal et al., “Evolutionary algorithm optimization of biological learning parameters in a biomimetic neuroprosthesis,” IBM J. Res. Dev., vol. 61, no. 2/3, p. 6:1-6:14, Mar. 2017, doi: 10.1147/JRD.2017.2656758.

M. Raissi and G. E. Karniadakis, “Hidden physics models: Machine learning of nonlinear partial differential equations,” J. Comput. Phys., vol. 357, pp. 125–141, Mar. 2018, doi: 10.1016/j.jcp.2017.11.039.

E. J. Topol, “High-performance medicine: the convergence of human and artificial intelligence,” Nat. Med., vol. 25, no. 1, pp. 44–56, Jan. 2019, doi: 10.1038/s41591-018-0300-7.

M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Inferring solutions of differential equations using noisy multi-fidelity data,” J. Comput. Phys., vol. 335, pp. 736–746, Apr. 2017, doi: 10.1016/j.jcp.2017.01.060.

H. Wang, J. Feng, H. Zhang, and X. Li, “The effect of digital transformation strategy on performance: The moderating role of cognitive conflict,” Int. J. Confl. Manag., vol. 31, no. 3, pp. 441–462, Apr. 2020, doi: 10.1108/IJCMA-09-2019-0166.

H. Van Den Bedem and J. S. Fraser, “Integrative, dynamic structural biology at atomic resolution—it’s about time,” Nat. Methods, vol. 12, no. 4, pp. 307–318, Apr. 2015, doi: 10.1038/nmeth.3324.

F. Emmert-Streib, Z. Yang, H. Feng, S. Tripathi, and M. Dehmer, “An Introductory Review of Deep Learning for Prediction Models With Big Data,” Front. Artif. Intell., vol. 3, p. 4, Feb. 2020, doi: 10.3389/frai.2020.00004.

T. Althoff, R. Sosič, J. L. Hicks, A. C. King, S. L. Delp, and J. Leskovec, “Large-scale physical activity data reveal worldwide activity inequality,” Nature, vol. 547, no. 7663, pp. 336–339, Jul. 2017, doi: 10.1038/nature23018.

A. M. Tartakovsky, C. O. Marrero, P. Perdikaris, G. D. Tartakovsky, and D. Barajas-Solano, “Learning Parameters and Constitutive Relationships with Physics Informed Deep Neural Networks,” 2018, doi: 10.48550/ARXIV.1808.03398.

B. Baillargeon, N. Rebelo, D. D. Fox, R. L. Taylor, and E. Kuhl, “The Living Heart Project: A robust and integrative simulator for human heart function,” Eur. J. Mech. - ASolids, vol. 48, pp. 38–47, Nov. 2014, doi: 10.1016/j.euromechsol.2014.04.001.

Z. Costello and H. G. Martin, “A machine learning approach to predict metabolic pathway dynamics from time-series multiomics data,” Npj Syst. Biol. Appl., vol. 4, no. 1, p. 19, May 2018, doi: 10.1038/s41540-018-0054-3.

G. Kissas, Y. Yang, E. Hwuang, W. R. Witschey, J. A. Detre, and P. Perdikaris, “Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks,” Comput. Methods Appl. Mech. Eng., vol. 358, p. 112623, Jan. 2020, doi: 10.1016/j.cma.2019.112623.

J. Ling, R. Jones, and J. Templeton, “Machine learning strategies for systems with invariance properties,” J. Comput. Phys., vol. 318, pp. 22–35, Aug. 2016, doi: 10.1016/j.jcp.2016.05.003.

D. W. Abueidda, Q. Lu, and S. Koric, “Meshless physics‐informed deep learning method for three‐dimensional solid mechanics,” Int. J. Numer. Methods Eng., vol. 122, no. 23, pp. 7182–7201, Dec. 2021, doi: 10.1002/nme.6828.

J. D’Ambrosio et al., “An MBSE Approach for Development of Resilient Automated Automotive Systems,” Systems, vol. 7, no. 1, p. 1, Jan. 2019, doi: 10.3390/systems7010001.

Z. Yang et al., “Deep learning approaches for mining structure-property linkages in high contrast composites from simulation datasets,” Comput. Mater. Sci., vol. 151, pp. 278–287, Aug. 2018, doi: 10.1016/j.commatsci.2018.05.014.

W. W. Lytton et al., “Multiscale modeling in the clinic: diseases of the brain and nervous system,” Brain Inform., vol. 4, no. 4, pp. 219–230, Dec. 2017, doi: 10.1007/s40708-017-0067-5.

F. Sahli-Costabal, K. Seo, E. Ashley, and E. Kuhl, “Classifying Drugs by their Arrhythmogenic Risk Using Machine Learning,” Biophys. J., vol. 118, no. 5, pp. 1165–1176, Mar. 2020, doi: 10.1016/j.bpj.2020.01.012.

P. Perdikaris and G. E. Karniadakis, “Model inversion via multi-fidelity Bayesian optimization: a new paradigm for parameter estimation in haemodynamics, and beyond,” J. R. Soc. Interface, vol. 13, no. 118, p. 20151107, May 2016, doi: 10.1098/rsif.2015.1107.

K. P. Champion, S. L. Brunton, and J. N. Kutz, “Discovery of Nonlinear Multiscale Systems: Sampling Strategies and Embeddings,” SIAM J. Appl. Dyn. Syst., vol. 18, no. 1, pp. 312–333, Jan. 2019, doi: 10.1137/18M1188227.

D. J. Livingstone, D. T. Manallack, and I. V. Tetko, “Data modelling with neural networks: Advantages and limitations,” J. Comput. Aided Mol. Des., vol. 11, no. 2, pp. 135–142, Mar. 1997, doi: 10.1023/A:1008074223811.

C. Jian, J. Ping, and M. Zhang, “A cloud edge-based two-level hybrid scheduling learning model in cloud manufacturing,” Int. J. Prod. Res., vol. 59, no. 16, pp. 4836–4850, Aug. 2021, doi: 10.1080/00207543.2020.1779371.

C. K. Sahu, C. Young, and R. Rai, “Artificial intelligence (AI) in augmented reality (AR)-assisted manufacturing applications: a review,” Int. J. Prod. Res., vol. 59, no. 16, pp. 4903–4959, Aug. 2021, doi: 10.1080/00207543.2020.1859636.

F. S. Costabal, K. Seo, E. A. Ashley, and E. Kuhl, “Classifying drugs by their arrhythmogenic risk using machine learning,” Cold Spring Harb. Lab., vol. NA, no. NA, pp. 545863-NA, 2019, doi: 10.1101/545863.

C.-L. Lin, S. Choi, B. Haghighi, J. Choi, and E. A. Hoffman, “Cluster-Guided Multiscale Lung Modeling via Machine Learning,” in Handbook of Materials Modeling: Applications: Current and Emerging Materials, W. Andreoni and S. Yip, Eds., Cham: Springer International Publishing, 2018, pp. 1–20. doi: 10.1007/978-3-319-50257-1_98-1.

G. H. Teichert and K. Garikipati, “Machine learning materials physics: Surrogate optimization and multi-fidelity algorithms predict precipitate morphology in an alternative to phase field dynamics,” Comput. Methods Appl. Mech. Eng., vol. 344, pp. 666–693, Feb. 2019, doi: 10.1016/j.cma.2018.10.025.

S. L. Brunton and J. N. Kutz, Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control, 1st ed. Cambridge University Press, 2019. doi: 10.1017/9781108380690.

A. Khadilkar, J. Wang, and R. Rai, “Deep learning–based stress prediction for bottom-up SLA 3D printing process,” Int. J. Adv. Manuf. Technol., vol. 102, no. 5–8, pp. 2555–2569, Jun. 2019, doi: 10.1007/s00170-019-03363-4.

A. Tank, I. Covert, N. Foti, A. Shojaie, and E. B. Fox, “Neural Granger Causality,” IEEE Trans. Pattern Anal. Mach. Intell., pp. 1–1, 2021, doi: 10.1109/TPAMI.2021.3065601.

B. Sanchez-Lengeling and A. Aspuru-Guzik, “Inverse molecular design using machine learning: Generative models for matter engineering,” Science, vol. 361, no. 6400, pp. 360–365, Jul. 2018, doi: 10.1126/science.aat2663.

A. Madni, C. Madni, and S. Lucero, “Leveraging Digital Twin Technology in Model-Based Systems Engineering,” Systems, vol. 7, no. 1, p. 7, Jan. 2019, doi: 10.3390/systems7010007.

Downloads

Published

2024-02-19

How to Cite

Bappy, M. A. (2024). Exploring the Integration of Informed Machine Learning in Engineering Applications: A Comprehensive Review. American Journal of Science and Learning for Development, 3(2), 11–21. https://doi.org/10.51699/ajsld.v3i2.3459

Issue

Section

Articles