American Journal of Science and Learning for Development

ISSN: 2835-2157
Volume 2 | No 11 | Nov - 2023

FEATURES OF THE METHOD, TYPICAL TASKS.

${ }^{1}$ Chiniev Odilbek Khamzakulovich

${ }^{1}$ Samarkand State University of Architecture and Construction teacher Department of Architecture.

Annotation: The object is orthogonally projected onto the zero level plane - Ho. A point in space is determined by its horizontal projection and a mark with a number corresponding to the height of the point. Plan drawings have a linear scale and are reversible.

Key words: Plane, Slope scale, Projections, Task, Horizontals of the plan, tangents horizontals of the slope cone, straight, graduated straight line, graduated curve.

The projection length b0, c 2,5 of the line segment BC is called the origin L . In the actual size of the straight line segment and the angle α of its inclination to the plane H is plotted, and the

arrows also show the graduation of the straight line projection. Graduation of the straight line b0, $c 2,5$ is reduced to finding its points 1 and 2 with marks in integers. The position b0-1 and $1-2$, corresponding to the unit of excess, is called the interval I of the straight line. The straight line interval -I is the reciprocal of the straight line slope $-\mathrm{i}-1 / \mathrm{I}(\operatorname{tg} \alpha)$.

The object is orthogonally projected onto the zero level plane - Ho. A point in space (point A is determined by its horizontal projection and a mark with a number corresponding to the height of the point (point a 2). Plan drawings have a linear scale and are reversible.

Planes and surfaces are considered to be dissected by level planes equidistant per unit height along horizontal lines 1 ...

A plane in space is determined by the scale of the slope, that is, a graduated projection of the slope line of the plane, and is depicted by two parallel straight lines. The angle α of the inclination of the slope line determines the inclination of the plane P and Ho . The scale of the slope Pi is perpendicular to the projections $0,1 \ldots$ of the horizontal planes, spaced at an interval I from each other.

Projections of the horizontal surfaces, for example a right circular cone, represent a continuous frame of concentric circles; the horizontal lines of the topographic earth surface are irregular curves.

TYPICAL TASKS

The following tasks apply when completing the job:

Task 1. Drawing a plane through a horizontal line.

Plane P is specified by slope $\mathrm{i}=$ $2 / 3$ with slope direction and horizontal 3. The slope scale Pi will be perpendicular to horizontal 3. Horizontal lines 2, 1, 0 of the plane are drawn at an interval $I=1 / \mathrm{i}=3 / 2$ from each other, plotted on the scale of slopes Pi from the point marked 3.

Task. 2. Drawing a plane through an inclined line.
The horizontals of the plane P passing through the inclined straight line AS are tangent to the equivalent horizontals of the slope cone* with the vertex S on the straight line (Fig. 8a). In Fig. 8b, plane P is specified by slope $\mathrm{l}=2$ and straight line aOS2. Let's construct horizontal lines 1 and 0 of the cone - concentric circles with center $S 2$ at the interval $I=1 / i=1 / 2$ from each other. We draw the horizontal lines $1-1, a 0-0$ of the plane through points 1 and aO of the graded straight line aOS2, as tangents to the horizontal lines 1 and 0 of the cone.

Task 3. Constructing horizontal lines of a surface of an equal slope passing through a spatial curve.

Horizontals of the surface Φ of an equal slope passing through the spatial curve AS", tangent to the equivalent horizontals of the family of slope cones with vertices $S^{\prime}, S^{\prime \prime} .$. on the curve. The horizontal lines S1-1, a0-0 ... of the surface are drawn through the points $\mathrm{S} 1, \mathrm{aO} \ldots$ of the graded curve a0, S2, as tangents to the horizontal lines 1,0 ... of cones - circles with centers S1, S2 ... radii I, I and 21... .

Task 4. Intersection of two planes.
The straight line m1-m5 of the intersection of the planes specified by the slope scales Pi and $Q i$ is determined by the intersection points m 1 and m 3 of two pairs of equivalent horizontal planes. Planes of equal slope intersect along the bisector of the angle between their equivalent horizontals.

Task 5. Intersection of a surface with a plane.

The line m1-m4 of intersection of the surface with the plane is determined by the set of points $m 1, m 2, m 3$... of the intersection of their equivalent horizontal lines. A plane and a conical surface with equal slopes intersect along a parabola.

Task 6. Intersection of a line with a surface.
The point K of intersection of straight line a4b1 with the surface is determined by including a graded straight line a4b1 in horizontals $1,2,3 \ldots$ of an arbitrary plane intersecting the surface along the curve m1-m5 (problem 5), which intersects straight line a4b1 at point P30. Visibility a4b1 will be found by its point with mark 3,5 , which exceeds the competing point 3 of horizontal 3 . Similarly, solving the problem of the intersection of a curve with a surface, along the curve is included in the auxiliary surface (curve S30-27 is included in horizontals S29-29, S28-28 ... surfaces F).

Task 7. Intersection of two surfaces.
The line m1-m4 of the intersection of surfaces is determined by the set of points $\mathrm{m} 1, \mathrm{~m} 2, \mathrm{~m} 3 \ldots$ of the intersection of equivalent horizontal lines of the surfaces. The shape of the curve is specified using the intersection point 2,5 of a pair of intermediate horizontal surfaces with marks 2,5 .

Literature:

1. Ibraimovna, M. F. (2023). Palaces of the Timurid Period of the middle Ages of Uzbekistan. JOURNAL OF ENGINEERING, MECHANICS AND MODERN ARCHITECTURE, 2(2), 24-28.
2. Ibraimovna, M. F. (2022). Palaces In The Historical Cities Of Uzbekistan Formation. Zien Journal of Social Sciences and Humanities, 12, 15-18.
3. Ibraimovna, M. F. (2023). Analytical Research Work on the Palaces of the Timurids in the Medieval Period of Uzbekistan. Central Asian Journal of Theoretical and Applied Science, 4(3), 7-10.
4. Sabohat, M., \&Firuza, M. (2022). Periods of Formation of Historical Structures of Architecture with Geometric Shapes. Journal of Architectural Design, 4, 21-26.
5. Ibraimovna, M. F. Abdusattorovna, M. S. (2023). Analytical Research Work on the Palaces of the Timurids in the Medieval Period of Uzbekistan. Central Asian Journal of Theoretical and Applied Science, 4(3), 7-10.
6. Firuzalbraimovna, M. (2023). Scientific and Natural Study of the Architecture of the Khiva Garden-Palaces, Development of Recommendations for their Use for Modern Tourism Purposes. Web of Semantic: Universal Journal on Innovative Education, 2(3), 10-13.
7. Ibraimovna, M. F. (2023). Analysis of Various Roofs and Roofs. Nexus: Journal of Advances Studies of Engineering Science, 2(3), 33-39.
8. Ibraimovna, M. F. (2023). Khiva is an Open-Air City-Museum. JOURNAL OF ENGINEERING, MECHANICS AND MODERN ARCHITECTURE, 2(4), 36-39.
9. Ibraimovna, M. F. (2023). History of Khiva. JOURNAL OF ENGINEERING, MECHANICS AND MODERN ARCHITECTURE, 2(4), 8-12.
10. Ibraimovna, M. F. (2023). Experiences of Restoring Palaces in Historical Cities of Uzbekistan and Historical Parks Around Them. JOURNAL OF ENGINEERING, MECHANICS AND MODERN ARCHITECTURE, 2(3), 41-44.
11. Ibraimovna, M. F. (2023). Formation of Palaces in Uzbekistan in the Late Middle Ages-Khanate Period. JOURNAL OF ENGINEERING, MECHANICS AND MODERN ARCHITECTURE, 2(3), 33-36.
12. Ibraimovna, M. F. (2023). Samarkand State University of Architecture and Construction. American Journal of Public Diplomacy and International Studies (29932157), 1(5), 10-14.
13. Makhmudova, F. (2023). DEPARTMENT OF ARCHITECTURE. STUDY AND CALCULATION OF SPATIAL BLOCKS WITH A CYLINDRICAL COATING SHELL. International Bulletin of Applied Science and Technology, 3(10), 163-166.
14. Abdirasulovna, M. N. (2023). Some Questions about Structural Schemes of Buildings. Nexus: Journal of Advances Studies of Engineering Science, 2(4), 1-6.
15. Abdirasulovna, M. N. (2023). Samarkand State University of Architecture and Construction. Multidisciplinary Journal of Science and Technology, 3(3), 398-400.
